Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13492, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866875

RESUMO

Liver cancer is one of the most pivotal global health problems, leading hepatocellular carcinoma (HCC) with a significant increase in cases worldwide. The role of non-coding-RNA in cancer proliferation and carcinogenesis has attracted much attention in the last decade; however, microRNAs (miRNAs), as non-coding RNA, are considered master mediators in various cancer progressions. Yet the role of miR-141 as a modulator for specific cellular processes in liver cancer cell proliferation is still unclear. This study identified the role of miR-141 and its potential functions in liver carcinogenesis. The level of miR-141 in HepG2 and HuH7 cells was assessed using quantitative real-time PCR (qRT-PCR) and compared with its expression in normal hepatocytes. A new miR-141 construct has been performed in a CMV promoter vector tagged with GFP. Using microarray analysis, we identified the potentially regulated genes by miR-141 in transfected HepG2 cells. The protein profile of the kallikrein-related peptidase 10 (KLK10) and tumor necrosis factor TNFSF-15 was investigated in HepG2 cells transfected with either an inhibitor, antagonist miR-141, or miR-141 overexpression vector using immunoblotting and flow cytometry assay. Finally, ELISA assay has been used to monitor the produced inflammatory cytokines from transfected HepG2 cells. Our findings showed that the expression of miR-141 significantly increased in HepG2 and HuH7 cells compared to the normal hepatocytes. Transfection of HepG2 cells with an inhibitor, antagonist miR-141, showed a significant reduction of HepG2 cell viability, unlike the transfection of miR-141 overexpression vector. The microarray data of HepG2 cells overexpressed miR-141 provided a hundred downregulated genes, including KLK10 and TNFSF-15. Furthermore, the expression profile of KLK10 and TNFSF-15 markedly depleted in HepG2 cells transfected with miR-141 overexpression accompanied by a decreasing level of interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α), indicating the role of miR-141 in HepG2 cell proliferation and programmed cell death. Interestingly, the experimental rats with liver cancer induced by Diethylnitrosamine injection further confirmed the upregulation of miR-141 level, IL-10, and TNF-α and the disturbance in KLK10 and TNFSF-15 gene expression compared with their expression in normal rats. The in-silico online tools, IntaRNA and miRWalk were used to confirm the direct interaction and potential binding sites between miR-141 and identified genes. Thus, the seeding regions of potential targeted sequences was cloned upstream of luciferase reporter gene in pGL3 control vector. Interestingly, the luciferase activities of constructed vectors were significantly decreased in HepG2 cells pre-transfected with miR-141 overexpression vector, while increasing in cells pre-transfected with miR-141 specific inhibitor. In summary, these data suggest the crucial role of miR-141 in liver cancer development via targeting KLK10 and TNFSF-15 and provide miR-141 as an attractive candidate in liver cancer treatment and protection.


Assuntos
Regulação Neoplásica da Expressão Gênica , Hepatoblastoma , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Células Hep G2 , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Hepatoblastoma/patologia , Calicreínas/genética , Calicreínas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Biomark Med ; 16(13): 959-970, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36052661

RESUMO

Aim: To investigate potential DNA methylation in methylcytosine dioxygenases and correlation of TET genes with vitamin B12/ferritin levels in cancer patients. Materials & methods: 200 blood samples were obtained from both cancer patients and healthy individuals. Results: The expression of DNMT1, DNMT3a and DNMT3b was increased in patients with low vitamin B12 and ferritin levels, while the expression of MTR, TET1 and TET3 significantly decreased. DNA methylation analysis in patients with deficient vitamin B12/ferritin levels showed methylomic changes within the location 318/CG and 385/CG in the promoter region of TET1 and TET3, respectively. Conclusion: Vitamin B12/ferritin deficiency contributes to DNA methylation progress in cancer patients.


Assuntos
Dioxigenases , Neoplasias , 5-Metilcitosina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Epigênese Genética , Ferritinas/metabolismo , Humanos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Neoplasias/complicações , Neoplasias/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Vitamina B 12
3.
Immunol Invest ; 51(2): 266-289, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32993405

RESUMO

Autophagy is a cellular housekeeping process that incorporates lysosomal-degradation to maintain cell survival and energy sources. In recent decades, the role of autophagy has implicated in the initiation and development of many diseases that affect humanity. Among these diseases are autoimmune diseases and neurodegenerative diseases, which connected with the lacking autophagy. Other diseases are connected with the increasing levels of autophagy such as cancers and infectious diseases. Therefore, controlling autophagy with sufficient regulators could represent an effective strategy to overcome such diseases. Interestingly, targeting autophagy can also provide a sufficient method to combat the current epidemic caused by the ongoing coronavirus. In this review, we aim to highlight the physiological function of the autophagic process to understand the circumstances surrounding its role in the cellular immunity associated with the development of human diseases.


Assuntos
Autofagia , Neoplasias , Humanos , Imunidade Celular
4.
Front Oncol ; 11: 682596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513674

RESUMO

Breast cancer is one of the most common causes of death in women worldwide and has harmful influence on their psychological state during therapy. Multikinase inhibitors have become effective drugs for treating a variety of cancer diseases such as breast cancer. A purified short peptide (H-P) was isolated from the natural honey and tested for its potential regulatory role in breast cancer cells compared with the effectiveness of the anticancer drug, Sorafenib (SOR), using MCF-7, EFM-19, and MCF-10A cell lines. Furthermore, we investigated the direct connection between Raf-1 activation and cellular autophagy as potential targets of SOR and H-P extract using RNA interference. Interestingly, the treatment with H-P showed competitive regulation of phosphorylated Raf-1, MEK1/2, and matched autophagy-related LC3B without any detectable toxic effects in the non-tumorigenic epithelial cells. Unlike SOR, the regulation of Raf-1 protein and autophagic machinery by the novel H-P extract showed neglected levels of the released proinflammatory cytokine. This regulation of cytokine secretion by H-P resulted in decreasing the expression level of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) in treated cells. Moreover, the transfection of MCF-7 cells with small interference RNA (siRNA) antagonist Raf-1 expression markedly reduced the expression of LC3B, while it increased the expression of NF-kB1 and NF-kB2, indicating the potential cross-link between Raf-1, autophagy, and NF-kB effector. Collectively, these findings suggest that H-P-mediated Raf-1, MEK1/2, LC3B, and NF-kB provide a novel and efficacious multikinase inhibitor for treating breast cancer without detectable cytotoxic effects.

5.
Front Oncol ; 9: 1220, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781509

RESUMO

Introduction: Cancer is one of the most difficult challenges faced by humanity due to its many associated issues, such as inability to prevent diseases, treatment safety, and high mortality rate. In cancer, a variety of cellular signaling is activated to ensure malignancy transformation, angiogenesis and metastasis. The most efficient signaling pathway in cancer is mitogen-activated protein kinase (MAPK), which controls malignancy and regulates apoptosis. Methods: Four different flavonoid glycosides have been isolated from Pulicaria jaubertii using the phytochemical characterization of hydro-methanol extract. The purified glycosides (PJs) were investigated for their potential repression of cancer development using human lung epithelial cells and hepatocellular carcinoma (HCC) and compared with Sorafenib (SOR), the standard systemic drug for HCC. In PJ-treated cells, the expression profile of K-Ras, B-Raf, and P53 were detected using qRT-PCR, flow cytometry, confocal microscopy and western blot. Steady-state mRNA and levels of transforming growth factor-beta (TGF-ß) and interleukin 8 (IL-8) were monitored in the fluids media at different time points following treatment. Results: Our results showed that the qurictine glycosides (PJ-1 and PJ-9) selectively inhibited the mutant K-Ras/B-Raf proteins expression and interaction in both cancer cells; while SOR showed obvious depletion of total Raf-1 protein in cancer cells and normal cells as well. Interestingly, the combination of PJ-1 or PJ-9 with SOR exhibited restoring cell viability of normal cells via controlling Raf-1 and P53 genes expression. Further, these identified PJ agents significantly adjusted the levels of TGF-ß and IL-8 in cancer treated cells accompanied by restoring the activation of P53 expression. These findings were confirmed by docking analysis of PJs ligand and the crystal structure of K-Ras, B-Raf, and ERK transcription factor. Conclusion: The current data provide novel and natural multi-kinase inhibitors with competitive regulation of the mutant proteins; K-Ras and B-Raf and sustained MAPK signaling without any detectable toxic effect in normal cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA