Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Open Vet J ; 14(2): 630-639, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38549574

RESUMO

Background: Formaldehyde (FA) and oxytetracycline (OTC) are the chemicals commonly used in aquaculture to prevent or treat fish diseases due to protozoa, parasites, and bacteria. Aim: The goal of the present study is to assess the liver injury and oxidative stress induced by exposure of sea bass (Dicentrarchuslabrax L) to therapeutic doses of FA (200 ml.m-3) and OTC (40 g.m-3) under the same conditions being applied in intensive aquaculture systems in Tunisia. Methods: The liver histopathological survey was achieved after 5 and 10 days of exposure to FA, OTC separately or mixed. In parallel, liver catalase activity and malondialdehyde (MDA) were measured to assess oxidative stress. Results: Results showed that treatment with FA and OTC used alone or in combinations induced liver damage as measured by sinusoid dilatation, intensive vacuolization, blood congestion, and focal necrosis. Significant elevation in catalyze activity and MDA levels were also observed in liver homogenates by the treatment (p ≤ 005). Conclusion: Combined treatment induced higher effects suggesting the critical hazards associated with FA and OTC when released to the environment.


Assuntos
Bass , Oxitetraciclina , Animais , Oxitetraciclina/farmacologia , Estresse Oxidativo , Fígado , Formaldeído/farmacologia
2.
Open Vet J ; 13(7): 839-845, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37614727

RESUMO

Background: The immune system in chickens has a fundamental role in controlling many diseases based on vaccination, thus enhancement of the immune system response is a priority. Aim: The aim of this experiment was to study the effect of probiotics and humic acid on immunity of broiler chickens. Methods: Day-old 300 Ross broiler chicks were segregated into 5 groups of 60 chicks per group. Group C was considered as a control. Groups T1, T2, T3, and T4 were given probiotics, antibiotics, humic acid for the first 7 days and humic acid for 42 days, respectively. Samples were collected on days 27 and 42 to assess the humoral immunity, cellular immunity, lymphoid organs weight, and differential leucocyte count (DLC). Results: The results showed a significant increase (p < 0.05) in antibodies titer against Newcastle disease virus in chickens given humic acid (T4) daily for 42 days as compared to the control. There was also a significant increase in antibodies titer in the T1 group given probiotic for the first week lasting up to day 27 as compared to the control. The skin thickness of T4 group showed a significant increase as compared to T1 and T2 groups after 24 hours of DNCB challenge. After 48 hours, the thickness was still significantly higher in the T4 group as compared to other groups except for the control. There were no significant differences in Bursa of Fabricius/Body weight (%) between the groups. Spleen/Body weight (%) was significantly higher in the control group and T1 than the other groups on day 42. The DLC remains normal in all groups. Conclusion: It is concluded that the humic acid has a stimulant and strengthening effect on the humoral and cellular immune system when given daily to broiler chickens. Moreover, the use of humic acid and probiotics with good hygiene in the first week of age may alternate the use of antibiotics which could be toxic and raise bacterial resistance.


Assuntos
Substâncias Húmicas , Probióticos , Animais , Galinhas , Antibacterianos , Probióticos/farmacologia , Peso Corporal
3.
Open Vet J ; 12(2): 221-230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603079

RESUMO

Background: Escherichia coli remains a major pathogen of poultry. Most vaccines are inactivated and produced empirically. Although inactivated Salmonella vaccines have been produced by culture under conditions of Fe deprivation, no vaccines have been produced which are likely to express all the proteins expressed during infection of antigen-presenting cells. Aim: The aim was to produce a more protective inactivated vaccine by culturing the avian E. coli in a synthetic medium that resembled the environment of the phagolysosome. Methods: Global gene expression in a pathogenic avian O78:K80 strain of E. coli, harvested from infected avian macrophage-like HD11 cells, was compared by microarray with bacteria cultured in a tissue culture medium. A liquid synthetic medium was produced based on the environmental conditions identified to which the bacteria were exposed intracellularly. A bacterin was produced from this strain and its protective ability was assessed in chickens. Results: The changes in E. coli gene expression observed included the use of different electron acceptors and carbon sources such as ethanolamine, ß-glucosides, galactonate, dicarboxylic acids, and amino acids, up-regulation of genes associated with Fe and Mn uptake, and up-regulation of type-1 and curli fimbriae, other adhesion genes and down-regulation of sialic acid synthesis genes. The bacterin produced in the synthetic medium was statistically more protective than a bacterin prepared from bacteria cultured in the nutrient broth when tested in vaccinated chickens challenged with a different virulent E. coli O78:K80 strain. Conclusion: The approach of using gene expression to produce synthetic media for the generation of more effective bacterins could be used for a number of intracellular bacteria pathogens including Enteroinvasive E. coli, Salmonella, and the Pasteurella/Riemerella/Mannheimia group of organisms.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Vacinas Bacterianas , Galinhas , Escherichia coli/genética , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Vacinas de Produtos Inativados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA