Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
Environ Microbiol ; 24(3): 1622-1637, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35191594

RESUMO

Peronospora effusa causes downy mildew, the economically most important disease of cultivated spinach worldwide. To date, 19 P. effusa races have been denominated based on their capacity to break spinach resistances, but their genetic diversity and the evolutionary processes that contribute to race emergence are unknown. Here, we performed the first systematic analysis of P. effusa races showing that those emerge by both asexual and sexual reproduction. Specifically, we studied the diversity of 26 P. effusa isolates from 16 denominated races based on mitochondrial and nuclear comparative genomics. Mitochondrial genomes based on long-read sequencing coupled with diversity assessment based on short-read sequencing uncovered two mitochondrial haplogroups, each with distinct genome organization. Nuclear genome-wide comparisons of the 26 isolates revealed that 10 isolates from six races could clearly be divided into three asexually evolving groups, in concordance with their mitochondrial phylogeny. The remaining isolates showed signals of reticulated evolution and discordance between nuclear and mitochondrial phylogenies, suggesting that these evolved through sexual reproduction. Increased understanding of this pathogen's reproductive modes will provide the framework for future studies into the molecular mechanisms underlying race emergence and into the P. effusa-spinach interaction, thus assisting in sustainable production of spinach through knowledge-driven resistance breeding.


Assuntos
Oomicetos , Peronospora , Peronospora/genética , Doenças das Plantas , Reprodução/genética , Spinacia oleracea/genética
3.
Mol Plant ; 14(5): 820-828, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33516967

RESUMO

The jasmonic acid (JA) signaling pathway is used by plants to control wound responses. The persistent accumulation of JA inhibits plant growth, and the hydroxylation of JA to 12-hydroxy-JA by JASMONATE-INDUCED OXYGENASEs (JOXs, also named jasmonic acid oxidases) is therefore vital for plant growth, while structural details of JA recognition by JOXs are unknown. Here, we present the 2.65 Å resolution X-ray crystal structure of Arabidopsis JOX2 in complex with its substrate JA and its co-substrates 2-oxoglutarate and Fe(II). JOX2 contains a distorted double-stranded ß helix (DSBH) core flanked by α helices and loops. JA is bound in the narrow substrate pocket by hydrogen bonds with the arginine triad R225, R350, and R354 and by hydrophobic interactions mainly with the phenylalanine triad F157, F317, and F346. The most critical residues for JA binding are F157 and R225, both from the DSBH core, which interact with the cyclopentane ring of JA. The spatial distribution of critical residues for JA binding and the shape of the substrate-binding pocket together define the substrate selectivity of the JOXs. Sequence alignment shows that these critical residues are conserved among JOXs from higher plants. Collectively, our study provides insights into the mechanism by which higher plants hydroxylate the hormone JA.


Assuntos
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxigenases/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Ciclopentanos/antagonistas & inibidores , Regulação da Expressão Gênica de Plantas , Oxigenases/genética , Oxilipinas/antagonistas & inibidores , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Transdução de Sinais
4.
PLoS One ; 15(5): e0226540, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32396563

RESUMO

Plant pathogenic bacteria, fungi and oomycetes secrete effector proteins to manipulate host cell processes to establish a successful infection. Over the last decade the genomes and transcriptomes of many agriculturally important plant pathogens have been sequenced and vast candidate effector repertoires were identified using bioinformatic analyses. Elucidating the contribution of individual effectors to pathogenicity is the next major hurdle. To advance our understanding of the molecular mechanisms underlying lettuce susceptibility to the downy mildew Bremia lactucae, we mapped physical interactions between B. lactucae effectors and lettuce candidate target proteins. Using a lettuce cDNA library-based yeast-two-hybrid system, 61 protein-protein interactions were identified, involving 21 B. lactucae effectors and 46 unique lettuce proteins. The top ten interactors based on the number of independent colonies identified in the Y2H and two interactors that belong to gene families involved in plant immunity, were further characterized. We determined the subcellular localization of the fluorescently tagged lettuce proteins and their interacting effectors. Importantly, relocalization of effectors or their interactors to the nucleus was observed for four protein-pairs upon their co-expression, supporting their interaction in planta.


Assuntos
Resistência à Doença/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Lactuca/microbiologia
5.
Mol Plant Pathol ; 20(2): 240-253, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30251420

RESUMO

Plant-pathogenic oomycetes secrete effector proteins to suppress host immune responses. Resistance proteins may recognize effectors and activate immunity, which is often associated with a hypersensitive response (HR). Transient expression of effectors in plant germplasm and screening for HR has proven to be a powerful tool in the identification of new resistance genes. In this study, 14 effectors from the lettuce downy mildew Bremia lactucae race Bl:24 were screened for HR induction in over 150 lettuce accessions. Three effectors-BLN06, BLR38 and BLR40-were recognized in specific lettuce lines. The recognition of effector BLR38 in Lactuca serriola LS102 did not co-segregate with resistance against race Bl:24, but was linked to resistance against multiple other B. lactucae races. Two unlinked loci are both required for effector recognition and are located near known major resistance clusters. Gene dosage affects the intensity of the BLR38-triggered HR, but is of minor importance for disease resistance.


Assuntos
Lactuca/genética , Lactuca/microbiologia , Oomicetos/patogenicidade , Dosagem de Genes/genética , Oomicetos/genética , Oomicetos/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(24): 6388-6393, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28559313

RESUMO

The phytohormone jasmonic acid (JA) is vital in plant defense and development. Although biosynthesis of JA and activation of JA-responsive gene expression by the bioactive form JA-isoleucine have been well-studied, knowledge on JA metabolism is incomplete. In particular, the enzyme that hydroxylates JA to 12-OH-JA, an inactive form of JA that accumulates after wounding and pathogen attack, is unknown. Here, we report the identification of four paralogous 2-oxoglutarate/Fe(II)-dependent oxygenases in Arabidopsis thaliana as JA hydroxylases and show that they down-regulate JA-dependent responses. Because they are induced by JA we named them JASMONATE-INDUCED OXYGENASES (JOXs). Concurrent mutation of the four genes in a quadruple Arabidopsis mutant resulted in increased defense gene expression and increased resistance to the necrotrophic fungus Botrytis cinerea and the caterpillar Mamestra brassicae In addition, root and shoot growth of the plants was inhibited. Metabolite analysis of leaves showed that loss of function of the four JOX enzymes resulted in overaccumulation of JA and in reduced turnover of JA into 12-OH-JA. Transformation of the quadruple mutant with each JOX gene strongly reduced JA levels, demonstrating that all four JOXs inactivate JA in plants. The in vitro catalysis of 12-OH-JA from JA by recombinant enzyme could be confirmed for three JOXs. The identification of the enzymes responsible for hydroxylation of JA reveals a missing step in JA metabolism, which is important for the inactivation of the hormone and subsequent down-regulation of JA-dependent defenses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxigenases/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclopentanos/antagonistas & inibidores , Regulação para Baixo , Genes de Plantas , Hidroxilação , Família Multigênica , Mutação , Oxigenases/genética , Oxilipinas/antagonistas & inibidores , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Plant J ; 81(2): 210-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25376907

RESUMO

Arabidopsis downy mildew resistant 6 (dmr6) mutants have lost their susceptibility to the downy mildew Hyaloperonospora arabidopsidis. Here we show that dmr6 is also resistant to the bacterium Pseudomonas syringae and the oomycete Phytophthora capsici. Resistance is accompanied by enhanced defense gene expression and elevated salicylic acid levels. The suppressive effect of the DMR6 oxygenase was confirmed in transgenic Arabidopsis lines overexpressing DMR6 that show enhanced susceptibility to H. arabidopsidis, P. capsici, and P. syringae. Phylogenetic analysis of the superfamily of 2-oxoglutarate Fe(II)-dependent oxygenases revealed a subgroup of DMR6-LIKE OXYGENASEs (DLOs). Within Arabidopsis, DMR6 is most closely related to DLO1 and DLO2. Overexpression of DLO1 and DLO2 in the dmr6 mutant restored the susceptibility to downy mildew indicating that DLOs negatively affect defense, similar to DMR6. DLO1, but not DLO2, is co-expressed with DMR6, showing strong activation during pathogen attack and following salicylic acid treatment. DMR6 and DLO1 differ in their spatial expression pattern in downy mildew-infected Arabidopsis leaves; DMR6 is mostly expressed in cells that are in contact with hyphae and haustoria of H. arabidopsidis, while DLO1 is expressed mainly in the vascular tissues near infection sites. Strikingly, the dmr6-3_dlo1 double mutant, that is completely resistant to H. arabidopsidis, showed a strong growth reduction that was associated with high levels of salicylic acid. We conclude that DMR6 and DLO1 redundantly suppress plant immunity, but also have distinct activities based on their differential localization of expression.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oomicetos/patogenicidade , Doenças das Plantas/genética , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Pseudomonas syringae/patogenicidade
8.
Plant Physiol ; 164(1): 352-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24259685

RESUMO

Plants perceive microbial invaders using pattern recognition receptors that recognize microbe-associated molecular patterns. In this study, we identified RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 (RBPG1), an Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like protein, AtRLP42, that recognizes fungal endopolygalacturonases (PGs) and acts as a novel microbe-associated molecular pattern receptor. RBPG1 recognizes several PGs from the plant pathogen Botrytis cinerea as well as one from the saprotroph Aspergillus niger. Infiltration of B. cinerea PGs into Arabidopsis accession Columbia induced a necrotic response, whereas accession Brno (Br-0) showed no symptoms. A map-based cloning strategy, combined with comparative and functional genomics, led to the identification of the Columbia RBPG1 gene and showed that this gene is essential for the responsiveness of Arabidopsis to the PGs. Transformation of RBPG1 into accession Br-0 resulted in a gain of PG responsiveness. Transgenic Br-0 plants expressing RBPG1 were equally susceptible as the recipient Br-0 to the necrotroph B. cinerea and to the biotroph Hyaloperonospora arabidopsidis. Pretreating leaves of the transgenic plants with a PG resulted in increased resistance to H. arabidopsidis. Coimmunoprecipitation experiments demonstrated that RBPG1 and PG form a complex in Nicotiana benthamiana, which also involves the Arabidopsis leucine-rich repeat receptor-like protein SOBIR1 (for SUPPRESSOR OF BIR1). sobir1 mutant plants did not induce necrosis in response to PGs and were compromised in PG-induced resistance to H. arabidopsidis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Interações Hospedeiro-Patógeno , Poligalacturonase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Aspergillus niger/patogenicidade , Botrytis/patogenicidade , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação , Oomicetos/patogenicidade , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Locos de Características Quantitativas , Nicotiana/genética
9.
Plant Cell ; 21(7): 2179-89, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19622802

RESUMO

Plant disease resistance is commonly triggered by early pathogen recognition and activation of immunity. An alternative form of resistance is mediated by recessive downy mildew resistant 1 (dmr1) alleles in Arabidopsis thaliana. Map-based cloning revealed that DMR1 encodes homoserine kinase (HSK). Six independent dmr1 mutants each carry a different amino acid substitution in the HSK protein. Amino acid analysis revealed that dmr1 mutants contain high levels of homoserine that is undetectable in wild-type plants. Surprisingly, the level of amino acids downstream in the aspartate (Asp) pathway was not reduced in dmr1 mutants. Exogenous homoserine does not directly affect pathogen growth but induces resistance when infiltrated in Arabidopsis. We provide evidence that homoserine accumulation in the chloroplast triggers a novel form of downy mildew resistance that is independent of known immune responses.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/microbiologia , Imunidade Inata/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Doenças das Plantas/microbiologia , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Imunidade Inata/genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia
10.
Plant J ; 54(5): 785-93, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18248595

RESUMO

The Arabidopsis mutant downy mildew resistant 6 (dmr6) carries a recessive mutation that results in the loss of susceptibility to Hyaloperonospora parasitica. Here we describe the map-based cloning of DMR6 (At5g24530), which was found to encode a 2-oxoglutarate (2OG)-Fe(II) oxygenase of unknown function. DMR6 transcription is locally induced during infections with both compatible and incompatible H. parasitica isolates. High DMR6 transcript levels were also observed in constitutive defense mutants and after treatment with salicylic acid analog BTH, suggesting that DMR6 has a role during plant defense. Expression analysis of dmr6 mutants, using DNA microarrays and quantitative PCR, showed the enhanced expression of a subset of defense-associated genes, including DMR6 itself, suggesting dmr6-mediated resistance results from the activation of plant defense responses. Alternatively, resistance could be caused by the accumulation of a toxic DMR6 substrate, or by the absence of a DMR6 metabolic product that is required for H. parasitica infection.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas , Cetona Oxirredutases/genética , Oomicetos/fisiologia , Arabidopsis/microbiologia , Sequência de Bases , Primers do DNA , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA