Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Anesthesiology ; 140(2): 207-219, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889844

RESUMO

BACKGROUND: Remimazolam exhibits sedative properties by binding to γ-aminobutyric acid type A receptors. Remimazolam is administered as a bolus dose or continuous infusion, but has not been studied using target-controlled infusion (TCI). The study quantified the relationship between the remimazolam concentration, Modified Observer's Assessment of Alertness and Sedation (MOAAS) score, and bispectral index (BIS) using TCI. METHODS: The authors performed a three-period, crossover, dose-ranging clinical trial in 24 healthy volunteers using age and sex stratification. Data collected in the first period, where remimazolam was administered alone using a step-up and step-down TCI protocol, were used for this analysis. Remimazolam concentrations, MOAAS scores, and BIS values were collected at each step at steady state. Data were analyzed using nonlinear mixed-effects modeling methodology. RESULTS: The relationship between remimazolam, BIS, and MOAAS differed between step-up and step-down infusions at similar remimazolam target concentrations. Tolerance, driven by remimazolam or CNS7054, significantly improved overall model fit (P < 0.01) for both BIS and MOAAS models. After 30 min of repeated bolus dosing, mimicking the regimen in the label for procedural sedation, the BIS and probability of MOAAS 2/3 were predicted to be 54 (95% prediction interval, 44 to 67) and 2% (95% prediction interval, 0 to 32%) versus 58 (95% prediction interval, 48 to 70) and 8% (95% prediction interval, 0 to 36%) in a model without and with tolerance, respectively. After 60 min of continuous infusion, mimicking the regimen in the label for general anesthesia, the BIS and probability of MOAAS 0 were predicted to be 40 (95% prediction interval, 33 to 50) and 87% (95% prediction interval, 18 to 100%) versus 50 (95% prediction interval, 41 to 60) and 59% (95% prediction interval, 6 to 99%) in a model without and with tolerance, respectively. CONCLUSIONS: In this study, it was shown that remimazolam-induced sedation is prone to tolerance development, which is potentially mediated by the CNS7054 concentration. The clinical consequences are, however, limited in situations where remimazolam is titrated to effect.


Assuntos
Benzodiazepinas , Hipnóticos e Sedativos , Humanos , Anestesia Geral , Benzodiazepinas/farmacologia , Voluntários Saudáveis , Hipnóticos e Sedativos/farmacologia , Infusões Intravenosas
2.
Curr Opin Anaesthesiol ; 36(5): 602-607, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678184

RESUMO

PURPOSE OF REVIEW: There are various pharmacokinetic-dynamic models available, which describe the time course of drug concentration and effect and which can be incorporated into target-controlled infusion (TCI) systems. For anesthesia and sedation, most of these models are derived from narrow patient populations, which restricts applicability for the overall population, including (small) children, elderly, and obese patients. This forces clinicians to select specific models for specific populations. RECENT FINDINGS: Recently, general purpose models have been developed for propofol and remifentanil using data from multiple studies and broad, diverse patient groups. General-purpose models might reduce the risks associated with extrapolation, incorrect usage, and unfamiliarity with a specific TCI-model, as they offer less restrictive boundaries (i.e., the patient "doesn't fit in the selected model") compared with the earlier, simpler models. Extrapolation of a model can lead to delayed recovery or inadequate anesthesia. If multiple models for the same drug are implemented in the pump, it is possible to select the wrong model for that specific case; this can be overcome with one general purpose model implemented in the pump. SUMMARY: This article examines the usability of these general-purpose models in relation to the more traditional models.


Assuntos
Anestésicos Intravenosos , Propofol , Criança , Idoso , Humanos , Anestésicos Intravenosos/efeitos adversos , Anestesia Intravenosa/efeitos adversos , Anestesia Geral , Propofol/efeitos adversos , Remifentanil/efeitos adversos
3.
J Clin Anesth ; 90: 111225, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37542918

RESUMO

BACKGROUND: Objective neuromuscular monitoring remains the single most reliable method to ensure optimal perioperative neuromuscular management. Nevertheless, the prediction of clinical neuromuscular endpoints by means of Pharmacokinetic (PK) and Pharmacodynamic (PD) modelling has the potential to complement monitoring and improve perioperative neuromuscular management.s STUDY OBJECTIVE: The present study aims to assess the performance of published Rocuronium PK/PD models in predicting intraoperative Train-of-four (TOF) ratios when benchmarked against electromyographic TOF measurements. DESIGN: Observational trial. SETTING: Tertiary Belgian hospital, from August 2020 up to September 2021. PATIENTS AND INTERVENTIONS: Seventy-four patients undergoing general anaesthesia for elective surgery requiring the administration of rocuronium and subject to continuous EMG neuromuscular monitoring were included. PK/PD-simulated TOF ratios were plotted and synchronised with their measured electromyographic counterparts and their differences analysed by means of Predictive Error derivatives (Varvel criteria). MAIN RESULTS: Published rocuronium PK/PD models overestimated clinically registered TOF ratios. The models of Wierda, Szenohradszky, Cooper, Alvarez-Gomez and McCoy showed significant predictive consistency between themselves, displaying Median Absolute Performance Errors between 38% and 41%, and intra-individual differences (Wobble) between 14 and 15%. The Kleijn model outperformed the former with a lower Median Absolute Performance Error (16%, 95%CI [0.01; 57]) and Wobble (11%, 95%CI [0.01; 34]). All models displayed considerably wide 95% confidence intervals for all performance metrics, suggesting a significantly variable performance. CONCLUSIONS: Simulated TOF ratios based on published PK/PD models do not accurately predict real intraoperative TOF ratio dynamics. TRIAL REGISTRATION: NCT04518761 (clinicaltrials.gov), registered on 19 August 2020.


Assuntos
Bloqueio Neuromuscular , Rocurônio , Humanos , Anestesia Geral/métodos , Monitoração Neuromuscular/métodos
4.
Br J Anaesth ; 131(2): 222-233, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37355412

RESUMO

BACKGROUND: Propofol and remifentanil are frequently combined for the induction and maintenance of general anaesthesia. Both propofol and remifentanil cause vasodilation and potentially reduce arterial BP. We aimed to develop a mechanism-based model that characterises the haemodynamic interactions between remifentanil and propofol. METHODS: Data from two clinical trials in healthy volunteers were analysed using remifentanil-alone, propofol-alone, and combination groups. We evaluated remifentanil effects on haemodynamics using a previously developed mechanism-based haemodynamic model of propofol. The interaction between propofol and remifentanil was explored using the principles of the general pharmacodynamic interaction (GPDI) model. RESULTS: Remifentanil alone increased the dissipation rate of total peripheral resistance by 50% at 3.0 ng ml-1. Additionally, the dissipation rates of HR and stroke volume were attenuated by 4.8% and 4.9% per 1 ng ml-1 increase in remifentanil concentration, respectively. The maximal effect of propofol alone in decreasing the production rate of total peripheral resistance was 78%, which decreased to 32% when combined with remifentanil 4 ng ml-1. The effects of remifentanil on HR and stroke volume were attenuated by propofol with maximum decreases of 11.9% and 21.2%, respectively. Goodness-of-fit plots and prediction-corrected visual predictive check plots showed good predictive performance of the models. CONCLUSIONS: The structure of the previous mechanism-based haemodynamic model for propofol was able to describe the effects of remifentanil alone on haemodynamic variables. The GPDI model provided a good framework for characterising the pharmacodynamic interaction between remifentanil and propofol on haemodynamic properties. CLINICAL TRIAL REGISTRATION: NCT02043938; NCT03143972.


Assuntos
Propofol , Humanos , Anestésicos Intravenosos/farmacologia , Voluntários Saudáveis , Hemodinâmica , Piperidinas/farmacologia , Propofol/farmacologia , Remifentanil/farmacologia
5.
Br J Anaesth ; 128(5): 806-816, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35249706

RESUMO

BACKGROUND: The adverse haemodynamic effects of the intravenous anaesthetic propofol are well known, yet few empirical models have explored the dose-response relationship. Evidence suggests that hypotension during general anaesthesia is associated with postoperative mortality. We developed a mechanism-based model that quantitatively characterises the magnitude of propofol-induced haemodynamic effects during general anaesthesia. METHODS: Mean arterial pressure (MAP), heart rate (HR) and pulse pressure (PP) measurements were available from 36 healthy volunteers who received propofol in a step-up and step-down fashion by target-controlled infusion using the Schnider pharmacokinetic model. A mechanistic pharmacodynamic model was explored based on the Snelder model. To benchmark the performance of this model, we developed empirical models for MAP, HR, and PP. RESULTS: The mechanistic model consisted of three turnover equations representing total peripheral resistance (TPR), stroke volume (SV), and HR. Propofol-induced changes were implemented by Emax models on the zero-order production rates of the turnover equations for TPR and SV. The estimated 50% effective concentrations for propofol-induced changes in TPR and SV were 2.96 and 0.34 µg ml-1, respectively. The goodness-of-fit for the mechanism-based model was indistinguishable from the empirical models. Simulations showed that predictions from the mechanism-based model were similar to previously published MAP and HR observations. CONCLUSIONS: We developed a mechanism-based pharmacodynamic model for propofol-induced changes in MAP, TPR, SV, and HR as a potential approach for predicting haemodynamic alterations. CLINICAL TRIAL REGISTRATION: NCT02043938.


Assuntos
Propofol , Anestesia Geral , Anestésicos Intravenosos/farmacocinética , Voluntários Saudáveis , Hemodinâmica , Humanos , Propofol/efeitos adversos
7.
J Anesth ; 36(2): 294-302, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35147768

RESUMO

This narrative review intends to provide the anesthesiologist with the basic knowledge of the Bayesian concepts and should be considered as a tutorial for anesthesiologists in the concept of Bayesian statistics. The Bayesian approach represents the mathematical formulation of the idea that we can update our initial belief about data with the evidence obtained from any kind of acquired data. It provides a theoretical framework and a statistical method to use pre-existing information within the context of new evidence. Several authors have described the Bayesian approach as capable of dealing with uncertainty in medical decision-making. This review describes the Bayes theorem and how it is used in clinical studies in anesthesia and critical care. It starts with a general introduction to the theorem and its related concepts of prior and posterior probabilities. Second, there is an explanation of the basic concepts of the Bayesian statistical inference. Last, a summary of the applicability of some of the Bayesian statistics in current literature is provided, such as Bayesian analysis of clinical trials and PKPD modeling.


Assuntos
Anestesia , Anestesiologia , Anestesiologistas , Teorema de Bayes , Humanos
10.
Br J Anaesth ; 126(2): 386-394, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33317804

RESUMO

BACKGROUND: Target-controlled infusion (TCI) systems incorporating pharmacokinetic (PK) or PK-pharmacodynamic (PK-PD) models can be used to facilitate drug administration. Existing models were developed using data from select populations, the use of which is, strictly speaking, limited to these populations. Recently a propofol PK-PD model was developed for a broad population range. The aim of the study was to prospectively validate this model in children, adults, older subjects, and obese adults undergoing general anaesthesia. METHODS: The 25 subjects included in each of four groups were stratified by age and weight. Subjects received propofol through TCI with the Eleveld model, titrated to a bispectral index (BIS) of 40-60. Arterial blood samples were collected at 5, 10, 20, 30, 40, and 60 min after the start of propofol infusion, and every 30 min thereafter, to a maximum of 10 samples. BIS was recorded continuously. Predictive performance was assessed using the Varvel criteria. RESULTS: For PK, the Eleveld model showed a bias < ±20% in children, adults, and obese adults, but a greater bias (-27%) in older subjects. Precision was <30% in all groups. For PD, the bias and wobble were <5 BIS units and the precision was close to 10 BIS units in all groups. Anaesthetists were able to achieve intraoperative BIS values of 40-60 using effect-site target concentrations about 85-140% of the age-adjusted Ce50. CONCLUSIONS: The Eleveld propofol PK-PD model showed predictive precision <30% for arterial plasma concentrations and BIS predictions with a low (population) bias when used in TCI in clinical anaesthesia practice.


Assuntos
Anestesia Geral , Anestésicos Intravenosos/farmacocinética , Estado de Consciência/efeitos dos fármacos , Modelos Biológicos , Propofol/farmacocinética , Adolescente , Adulto , Fatores Etários , Idoso , Anestésicos Intravenosos/administração & dosagem , Anestésicos Intravenosos/sangue , Peso Corporal , Criança , Pré-Escolar , Feminino , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Obesidade , Propofol/administração & dosagem , Propofol/sangue , Estudos Prospectivos , Reprodutibilidade dos Testes , Adulto Jovem
11.
Anesthesiology ; 134(1): 35-51, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33064833

RESUMO

BACKGROUND: γ-Aminobutyric acid type A (GABAA) receptor agonists are known to cause involuntary muscle movements. The mechanism of these movements is not known, and its relationship to depth of anesthesia monitoring is unclear. We have explored the effect of involuntary muscle movement on the pharmacokinetic-pharmacodynamic model for the GABAA receptor agonist ABP-700 and its effects on the Bispectral Index (BIS) as well as the Modified Observer's Assessment of Alertness/Sedation (MOAA/S) scores. METHODS: Observations from 350 individuals (220 men, 130 women) were analyzed, comprising 6,312 ABP-700 concentrations, 5,658 ABP-700 metabolite (CPM-acid) concentrations, 25,745 filtered BIS values, and 6,249 MOAA/S scores, and a recirculatory model developed. Various subject covariates and pretreatment with an opioid or a benzodiazepine were explored as covariates. Relationships between BIS and MOAA/S models and involuntary muscle movements were examined. RESULTS: The final model shows that the pharmacokinetics of ABP-700 are characterized by small compartmental volumes and rapid clearance. The BIS model incorporates an effect-site for BIS suppression and a secondary excitatory/disinhibitory effect-site associated with a risk of involuntary muscle movements. The secondary effect-site has a threshold that decreases with age. The MOAA/S model did not show excitatory effects. CONCLUSIONS: The GABAA receptor agonist ABP-700 shows the expected suppressive effects for BIS and MOAA/S, but also disinhibitory effects for BIS associated with involuntary muscle movements and reduced by pretreatment. Our model provides information about involuntary muscle movements that may be useful to improve depth of anesthesia monitoring for GABAA receptor agonists.


Assuntos
Anestesia , Monitores de Consciência , Etomidato/análogos & derivados , Agonistas de Receptores de GABA-A/farmacologia , Imidazóis/farmacologia , Adulto , Algoritmos , Analgésicos Opioides , Benzodiazepinas , Sedação Consciente , Etomidato/farmacocinética , Feminino , Agonistas de Receptores de GABA-A/farmacocinética , Humanos , Imidazóis/farmacocinética , Masculino , Monitorização Intraoperatória , Músculo Liso/efeitos dos fármacos , Medicação Pré-Anestésica
12.
Ther Drug Monit ; 43(1): 126-130, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278242

RESUMO

BACKGROUND: Over the past decade, numerous obesity-specific pharmacokinetic (PK) models and dosage regimens have been developed. However, it is unclear whether vancomycin PKs differ between obese and other patients after accounting for weight, age, and kidney function. In this study, the authors investigated whether using obesity-specific population PK models for vancomycin offers any advantage in accuracy and precision over using a recently developed general-purpose model. METHODS: Vancomycin plasma concentrations in a cohort of 49 obese patients (body mass index [BMI] >30 kg/m2), not previously used in the development of any of the evaluated models, were used to validate the performance of 4 obesity-specific models and a general model. Bias and imprecision were calculated for the a priori and a posteriori predictive performance. RESULTS: The bias of the a priori prediction was lowest for one of the obesity-specific models (-1.40%) and that of the general model was a close second (-7.0%). The imprecision was lowest for the general model (4.34 mg/L). The predictive performance for the a posteriori predictions was best for the general model, both for bias (1.96%) and imprecision (2.75 mg/L). CONCLUSIONS: The results of the external validation of vancomycin PK in obese patients showed that currently available obesity-specific models do not necessarily outperform a broadly supported general-purpose model. Based on these results, the authors conclude that there is no advantage in using vancomycin PK models specifically tailored to obese patients over the general-purpose model reported by Colin et al.


Assuntos
Antibacterianos , Obesidade/metabolismo , Vancomicina , Antibacterianos/farmacocinética , Índice de Massa Corporal , Estudos de Coortes , Humanos , Vancomicina/farmacocinética
14.
AAPS J ; 23(1): 10, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33367961

RESUMO

The relationship between the concentration of a drug and its pharmacological effect is often described by empirical mathematical models. We investigated the relationship between the steepness of the concentration-effect relationship and inter-individual variability (IIV) of the parameters of the sigmoid Emax model, using the similarity between the sigmoid Emax model and the cumulative log-normal distribution. In addition, it is investigated whether IIV in the model parameters can be estimated accurately by population modeling. Multiple data sets, consisting of 40 individuals with 4 binary observations in each individual, were simulated with varying values for the model parameters and their IIV. The data sets were analyzed using Excel Solver and NONMEM. An empirical equation (Eq. (11)) was derived describing the steepness of the population-predicted concentration-effect profile (γ*) as a function of γ and IIV in C50 and γ, and was validated for both binary and continuous data. The tested study design is not suited to estimate the IIV in C50 and γ with reasonable precision. Using a naive pooling procedure, the population estimates γ* are significantly lower than the value of γ used for simulation. The steepness of the population-predicted concentration-effect relationship (γ*) is less than that of the individuals (γ). Using γ*, the population-predicted drug effect represents the drug effect, for binary data the probability of drug effect, at a given concentration for an arbitrary individual.


Assuntos
Relação Dose-Resposta a Droga , Modelos Biológicos , Variação Biológica da População , Simulação por Computador , Conjuntos de Dados como Assunto , Humanos , Probabilidade
15.
Br J Anaesth ; 125(4): 483-491, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32654750

RESUMO

BACKGROUND: Target-controlled infusion (TCI) systems use pharmacokinetic (PK) models to predict the drug infusion rates necessary to achieve a desired target plasma or effect-site concentration. As new PK models are developed and implemented in TCI systems, there can be uncertainty as to which target concentrations are appropriate. Existing dose recommendations can serve as a point of reference to identify target concentrations suitable for clinical applications. METHODS: Simulations of remifentanil TCI were performed using three PK models (Minto, Eleveld, and Kim). We sought to identify models and target concentrations for remifentanil administration in children, adult, older people, and severely obese individuals, consistent with the remifentanil product label. In a typical adult this is an induction dose of 0.5-1 µg kg-1 and starting maintenance infusion rate of 0.25 µg kg-1 min-1. RESULTS: For the Minto, Eleveld, and Kim remifentanil models, a plasma target concentration of ∼ 4 ng ml-1 achieves drug administration consistent with product label recommended initial doses for all groups with minor exceptions. With effect-site targeting in older individuals, a target concentration of ∼2 ng ml-1 is required for induction and ∼4 ng ml-1 for starting maintenance to achieve drug dosages close to product label recommendations. CONCLUSIONS: We identified remifentanil TCI target concentrations that resulted in drug administration similar to product label dosing recommendations. This approach did not necessarily identify target concentrations that achieve desired clinical effect, only those that are consistent with the product label recommended doses. We estimate that plasma target concentrations of 3.1-5.3 ng ml-1 are suitable for initial dosing.


Assuntos
Remifentanil/administração & dosagem , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Infusões Intravenosas , Pessoa de Meia-Idade , Modelos Biológicos , Remifentanil/farmacocinética , Adulto Jovem
16.
CPT Pharmacometrics Syst Pharmacol ; 9(5): 294-302, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32383808

RESUMO

This paper demonstrates the use of a genetic algorithm (GA) for the optimization of a dosing guideline. GAs are well-suited to derive combinations of doses and dosing intervals that go into a dosing guideline when the number of possible combinations rule out the calculation of all possible outcomes. GAs also allow for different constraints to be imposed on the optimization process to safeguard the clinical feasibility of the dosing guideline. In this work, we demonstrate the use of a GA for the optimization of intermittent vancomycin administration in adult patients. Constraints were placed on the dose strengths, the length of the dosing intervals, and the maximum infusion rate. In addition, flexibility with respect to the timing of the first maintenance dose was included in the optimization process. The GA-based optimal solution is compared with the Scottish Antimicrobial Prescribing Group vancomycin guideline.


Assuntos
Algoritmos , Antibacterianos/administração & dosagem , Vancomicina/administração & dosagem , Adulto , Relação Dose-Resposta a Droga , Humanos , Infusões Intravenosas , Guias de Prática Clínica como Assunto
17.
Anesthesiology ; 133(6): 1167-1169, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395465
19.
Clin Pharmacokinet ; 58(6): 767-780, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30656565

RESUMO

BACKGROUND AND OBJECTIVES: Uncertainty exists regarding the optimal dosing regimen for vancomycin in different patient populations, leading to a plethora of subgroup-specific pharmacokinetic models and derived dosing regimens. We aimed to investigate whether a single model for vancomycin could be developed based on a broad dataset covering the extremes of patient characteristics. Furthermore, as a benchmark for current dosing recommendations, we evaluated and optimised the expected vancomycin exposure throughout life and for specific patient subgroups. METHODS: A pooled population-pharmacokinetic model was built in NONMEM based on data from 14 different studies in different patient populations. Steady-state exposure was simulated and compared across patient subgroups for two US Food and Drug Administration/European Medicines Agency-approved drug labels and optimised doses were derived. RESULTS: The final model uses postmenstrual age, weight and serum creatinine as covariates. A 35-year-old, 70-kg patient with a serum creatinine level of 0.83 mg dL-1 (73.4 µmol L-1) has a V1, V2, CL and Q2 of 42.9 L, 41.7 L, 4.10 L h-1 and 3.22 L h-1. Clearance matures with age, reaching 50% of the maximal value (5.31 L h-1 70 kg-1) at 46.4 weeks postmenstrual age then declines with age to 50% at 61.6 years. Current dosing guidelines failed to achieve satisfactory steady-state exposure across patient subgroups. After optimisation, increased doses for the Food and Drug Administration label achieve consistent target attainment with minimal (± 20%) risk of under- and over-dosing across patient subgroups. CONCLUSIONS: A population model was developed that is useful for further development of age and kidney function-stratified dosing regimens of vancomycin and for individualisation of treatment through therapeutic drug monitoring and Bayesian forecasting.


Assuntos
Envelhecimento/sangue , Antibacterianos/farmacocinética , Monitoramento de Medicamentos/métodos , Modelos Biológicos , Vancomicina/farmacocinética , Adulto , Antibacterianos/sangue , Área Sob a Curva , Creatinina/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Guias de Prática Clínica como Assunto , Vancomicina/sangue
20.
Anesthesiology ; 127(1): 20-35, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28459733

RESUMO

BACKGROUND: Cyclopropyl-methoxycarbonylmetomidate (ABP-700) is a new "soft" etomidate analog. The primary objectives of this first-in-human study were to describe the safety and efficacy of ABP-700 and to determine its maximum tolerated dose. Secondary objectives were to characterize the pharmacokinetics of ABP-700 and its primary metabolite (cyclopropyl-methoxycarbonyl acid), to assess the clinical effects of ABP-700, and to investigate the dose-response and pharmacokinetic/pharmacodynamic relationships. METHODS: Sixty subjects were divided into 10 cohorts and received an increasing, single bolus of either ABP-700 or placebo. Safety was assessed by clinical laboratory evaluations, infusion-site reactions, continuous monitoring of vital signs, physical examination, adverse event monitoring, and adrenocorticotropic hormone stimulation testing. Clinical effects were assessed with modified observer's assessment of alertness/sedation and Bispectral Index monitoring. Pharmacokinetic parameters were calculated. RESULTS: Stopping criteria were met at 1.00 mg/kg dose. No serious adverse events were reported. Adverse events were dose-dependent and comprised involuntary muscle movement, tachycardia, and ventilatory effects. Adrenocorticotropic hormone stimulation evoked a physiologic cortisol response in all subjects, no different from placebo. Pharmacokinetics were dose-proportional. A three-compartment pharmacokinetic model described the data well. A rapid onset of anesthesia/sedation after bolus administration and also a rapid recovery were observed. A quantitative concentration-effect relationship was described for the modified observer's assessment of alertness/sedation and Bispectral Index. CONCLUSIONS: This first-in-human study of ABP-700 shows that ABP-700 was safe and well tolerated after single-bolus injections up to 1.00 mg/kg. Bolus doses of 0.25 and 0.35 mg/kg were found to provide the most beneficial clinical effect versus side-effect profile.


Assuntos
Etomidato/análogos & derivados , Etomidato/farmacologia , Hipnóticos e Sedativos/farmacologia , Adolescente , Adulto , Relação Dose-Resposta a Droga , Método Duplo-Cego , Etomidato/administração & dosagem , Feminino , Humanos , Hipnóticos e Sedativos/administração & dosagem , Infusões Intravenosas , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Valores de Referência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA