Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545528

RESUMO

Traditional pedobarography methods use direct force sensor placement in the shoe insole to record pressure patterns. One problem with such methods is that they tap only a few points on the flat sole under the foot and, therefore, do not account for the total ground reaction force. As a result, body weight tends to be under-estimated. This disadvantage has made it more difficult for pedobarography to be used to monitor many diseases, especially when their symptoms include body weight changes. In this paper, the problem of pedobarographic body weight measurement is addressed using a novel ergonomic shoe-integrated sensor array architecture based on concentrating the applied force via three-layered structures that we call Sandwiched Sensor Force Consolidators (SSFC). A shoe prototype is designed with the proposed sensors and shown to accurately measure body weight with an achievable relative accuracy greater than 99%, even in the presence of motion. The achieved relative accuracy is at least 4X better than the existing state of the art. The SSFC shoe prototype is built using readily available soccer shoes and piezoresistive FlexiForce sensors. To improve the wearability and comfort of the instrumented shoe, a semi-computational sensor design methodology is developed based on an equivalent-area concept that can accurately account for SSFC's with arbitrary shapes. The search space of the optimal SSFC design is shown to be combinatorial, and a high-performance computing (HPC) framework based on OpenMP parallel programming is proposed to accelerate the design optimization process. An optimal sensor design speedup of up to 22X is shown to be achievable using the HPC implementation.


Assuntos
Peso Corporal , Marcha , Sapatos , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Desenho de Equipamento , , Humanos , Pressão
2.
Micromachines (Basel) ; 10(5)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035434

RESUMO

Micro-Electro-Mechanical Systems (MEMS) devices are widely used for motion, pressure, light, and ultrasound sensing applications [...].

3.
Micromachines (Basel) ; 9(11)2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30453536

RESUMO

With the continuous advancements in microelectromechanical systems (MEMS) fabrication technology, inertial sensors like accelerometers and gyroscopes can be designed and manufactured with smaller footprint and lower power consumption. In the literature, there are several reported accelerometer designs based on MEMS technology and utilizing various transductions like capacitive, piezoelectric, optical, thermal, among several others. In particular, capacitive accelerometers are the most popular and highly researched due to several advantages like high sensitivity, low noise, low temperature sensitivity, linearity, and small footprint. Accelerometers can be designed to sense acceleration in all the three directions (X, Y, and Z-axis). Single-axis accelerometers are the most common and are often integrated orthogonally and combined as multiple-degree-of-freedom (MDoF) packages for sensing acceleration in the three directions. This type of MDoF increases the overall device footprint and cost. It also causes calibration errors and may require expensive compensations. Another type of MDoF accelerometers is based on monolithic integration and is proving to be effective in solving the footprint and calibration problems. There are mainly two classes of such monolithic MDoF accelerometers, depending on the number of proof masses used. The first class uses multiple proof masses with the main advantage being zero calibration issues. The second class uses a single proof mass, which results in compact device with a reduced noise floor. The latter class, however, suffers from high cross-axis sensitivity. It also requires very innovative layout designs, owing to the complicated mechanical structures and electrical contact placement. The performance complications due to nonlinearity, post fabrication process, and readout electronics affects both classes of accelerometers. In order to effectively compare them, we have used metrics such as sensitivity per unit area and noise-area product. This paper is devoted to an in-depth review of monolithic multi-axis capacitive MEMS accelerometers, including a detailed analysis of recent advancements aimed at solving their problems such as size, noise floor, cross-axis sensitivity, and process aware modeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA