Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Commun ; 13(1): 3716, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778399

RESUMO

The COVID-19 pandemic triggered the development of numerous diagnostic tools to monitor infection and to determine immune response. Although assays to measure binding antibodies against SARS-CoV-2 are widely available, more specific tests measuring neutralization activities of antibodies are immediately needed to quantify the extent and duration of protection that results from infection or vaccination. We previously developed a 'Serological Assay based on a Tri-part split-NanoLuc® (SATiN)' to detect antibodies that bind to the spike (S) protein of SARS-CoV-2. Here, we expand on our previous work and describe a reconfigured version of the SATiN assay, called Neutralization SATiN (Neu-SATiN), which measures neutralization activity of antibodies directly from convalescent or vaccinated sera. The results obtained with our assay and other neutralization assays are comparable but with significantly shorter preparation and run time for Neu-SATiN. As the assay is modular, we further demonstrate that Neu-SATiN enables rapid assessment of the effectiveness of vaccines and level of protection against existing SARS-CoV-2 variants of concern and can therefore be readily adapted for emerging variants.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Humanos , Luciferases , Glicoproteínas de Membrana/metabolismo , Testes de Neutralização , Pandemias , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
2.
J Appl Lab Med ; 7(3): 698-710, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34741514

RESUMO

BACKGROUND: Numerous serology assays are available for detection of SARS-CoV-2 antibodies but are limited in that only 1 or 2 target antigen(s) can be tested at a time. Here, we describe a novel multiplex assay that simultaneously detects and quantifies IgG antibodies to SARS-CoV-2 antigens, spike (S), nucleocapsid (N), receptor-binding domain (RBD), and N-terminal domain (NTD) in a single well. METHODS: Sensitivity was determined using samples (n = 124) from confirmed SARS-CoV-2 RT-PCR positive individuals. Prepandemic (n = 100) and non-COVID respiratory infection positive samples (n = 100) were used to evaluate specificity. Samples were analyzed using COVID-19 IgG multiplex serology assay from Meso Scale Discovery (MSD) and using commercial platforms from Abbott, EUROIMMUN, and Siemens. RESULTS: At >14 days post-PCR, MSD assay displayed >98.0% sensitivity [S 100% (95% CI 98.0%-100.0%); N 98.0% (95% CI 97.2%-98.9%); RBD 94.1% (95% CI 92.6%-95.6%); NTD 98.0% (95% CI, 97.2%-98.9%)] and 99% specificity (95% CI 99.3%-99.7%) for antibodies to all 4 antigens. Parallel assessment of antibodies to more than 1 antigen improved the sensitivity to 100% (95% CI 98.0%-100.0%) while maintaining 98% (95% CI 97.6%-98.4%) specificity regardless of the combinations used. When AU/mL concentrations of IgG antibodies from the MSD assay were compared against the corresponding IgG signals acquired from the single target commercial assays, the following correlations were observed: Abbott (vs MSD N, R2 = 0.73), Siemens (vs MSD RBD, R2 = 0.92), and EUROIMMUN (vs MSD S, R2 = 0.82). CONCLUSION: MSD assay offers an accurate and a comprehensive assessment of SARS-CoV-2 antibodies with higher sensitivity and equivalent specificity compared to the commercial IgG serology assays.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/diagnóstico , Teste Sorológico para COVID-19 , Humanos , Imunoglobulina G , Sensibilidade e Especificidade
3.
Arch Pathol Lab Med ; 145(10): 1212-1220, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34181714

RESUMO

CONTEXT.­: Emerging evidence shows correlation between the presence of neutralization antibodies (nAbs) and protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently available commercial serology assays lack the ability to specifically identify nAbs. An enzyme-linked immunosorbent assay-based nAb assay (GenScript cPass neutralization antibody assay) has recently received emergency use authorization from the Food and Drug Administration. OBJECTIVE.­: To evaluate the performance characteristics of this assay and compare and correlate it with the commercial assays that detect SARS-CoV-2-specific immunoglobulin G (IgG). DESIGN.­: Specimens from SARS-COV-2 infected patients (n = 124), healthy donors obtained prepandemic (n = 100), and patients with non-coronavirus disease 2019 (COVID-19) respiratory infections (n = 92) were analyzed using this assay. Samples with residual volume were also tested on 3 commercial serology platforms (Abbott, Euroimmun, Siemens). Twenty-eight randomly selected specimens from patients with COVID-19 and 10 healthy controls were subjected to a plaque reduction neutralization test. RESULTS.­: The cPass assay exhibited 96.1% (95% CI, 94.9%-97.3%) sensitivity (at >14 days post-positive PCR), 100% (95% CI, 98.0%-100.0%) specificity, and zero cross-reactivity for the presence of non-COVID-19 respiratory infections. When compared with the plaque reduction assay, 97.4% (95% CI, 96.2%-98.5%) qualitative agreement and a positive correlation (R2 = 0.76) was observed. Comparison of IgG signals from each of the commercial assays with the nAb results from plaque reduction neutralization test/cPass assays displayed greater than 94.7% qualitative agreement and correlations with R2 = 0.43/0.68 (Abbott), R2 = 0.57/0.85 (Euroimmun), and R2 = 0.39/0.63 (Siemens), respectively. CONCLUSIONS.­: The combined data support the use of cPass assay for accurate detection of the nAb response. Positive IgG results from commercial assays associated reasonably with nAbs presence and can serve as a substitute.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/epidemiologia , COVID-19/virologia , Criança , Pré-Escolar , Estudos de Coortes , Epidemias/prevenção & controle , Humanos , Imunoglobulina G/sangue , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade , Adulto Jovem
4.
Cell ; 149(6): 1339-52, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682253

RESUMO

We present a genetic interaction map of pairwise measures including ∼40% of nonessential S. pombe genes. By comparing interaction maps for fission and budding yeast, we confirmed widespread conservation of genetic relationships within and between complexes and pathways. However, we identified an important subset of orthologous complexes that have undergone functional "repurposing": the evolution of divergent functions and partnerships. We validated three functional repurposing events in S. pombe and mammalian cells and discovered that (1) two lumenal sensors of misfolded ER proteins, the kinase/nuclease Ire1 and the glucosyltransferase Gpt1, act together to mount an ER stress response; (2) ESCRT factors regulate spindle-pole-body duplication; and (3) a membrane-protein phosphatase and kinase complex, the STRIPAK complex, bridges the cis-Golgi, the centrosome, and the outer nuclear membrane to direct mitotic progression. Each discovery opens new areas of inquiry and-together-have implications for model organism-based research and the evolution of genetic systems.


Assuntos
Epistasia Genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Evolução Biológica , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Glicoproteínas de Membrana , Mitose , Complexos Multiproteicos/metabolismo , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Fuso Acromático , Resposta a Proteínas não Dobradas
5.
Transcription ; 1(1): 36-40, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21327161

RESUMO

Glucose and glutamine are the most abundant circulating nutrients and support the growth and proliferation of all cells, in particular rapidly growing and dividing cancer cells. Several recent studies implicate an expanded Myc network in how cells sense and utilize both glucose and glutamine. These studies reveal an unappreciated coordination between glycolysis and glutaminolysis, potentially providing new targets for therapeutic intervention in cancer.


Assuntos
Glucose/metabolismo , Glutamina/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Animais , Humanos , Neoplasias/patologia
6.
Genes Cancer ; 1(9): 893-907, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21779470

RESUMO

Growth factor signaling drives increased glucose uptake and glycolysis-the Warburg effect-that supports macromolecular synthesis necessary for cell growth and proliferation. Thioredoxin interacting protein (TXNIP), a direct and glucose-induced transcriptional target of MondoA, is a potent negative regulator of glucose uptake and utilization. Thus, TXNIP may inhibit cell growth by restricting substrate availability for macromolecular synthesis. To determine TXNIP's contribution to metabolic reprogramming, we examined MondoA and TXNIP as cells exit quiescence and enter G(1). Serum stimulation of quiescent immortal diploid fibroblasts resulted in an acute upregulation of glucose uptake and glycolysis coinciding with downregulation of TXNIP expression. Ectopic expression of either MondoA or TXNIP restricted cell growth by blocking glucose uptake. Mechanistically, Ras-MAPK and PI3K/Akt signaling inhibit TXNIP translation and MondoA-dependent TXNIP transcription, respectively. We propose that the coordinated downregulation of MondoA transcriptional activity at the TXNIP promoter and inhibition of TXNIP translation are key components of metabolic reprogramming required for cells to exit quiescence.

7.
Mol Cell Biol ; 27(10): 3695-707, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17339331

RESUMO

Proper regulation of receptor tyrosine kinase (RTK)-Ras-mitogen-activated protein kinase (MAPK) signaling pathways is critical for normal development and the prevention of cancer. SOS is a dual-function guanine nucleotide exchange factor (GEF) that catalyzes exchange on Ras and Rac. Although the physiologic role of SOS and its CDC25 domain in RTK-mediated Ras activation is well established, the in vivo function of its Dbl Rac GEF domain is less clear. We have identified a novel gain-of-function missense mutation in the Dbl domain of Caenorhabditis elegans SOS-1 that promotes epidermal growth factor receptor (EGFR) signaling in vivo. Our data indicate that a major developmental function of the Dbl domain is to inhibit EGF-dependent MAPK activation. The amount of inhibition conferred by the Dbl domain is equal to that of established trans-acting inhibitors of the EGFR pathway, including c-Cbl and RasGAP, and more than that of MAPK phosphatase. In conjunction with molecular modeling, our data suggest that the C. elegans mutation, as well as an equivalent mutation in human SOS1, activates the MAPK pathway by disrupting an autoinhibitory function of the Dbl domain on Ras activation. Our work suggests that functionally similar point mutations in humans could directly contribute to disease.


Assuntos
Caenorhabditis elegans , Receptores ErbB/metabolismo , Mutação , Proteína SOS1/metabolismo , Transdução de Sinais/fisiologia , Proteínas ras/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Ativação Enzimática , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fenótipo , Estrutura Terciária de Proteína , Interferência de RNA , Proteína SOS1/química , Proteína SOS1/genética , Alinhamento de Sequência , Quinases raf/genética , Quinases raf/metabolismo , Proteínas ras/química , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA