Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 13(6): 2425-2463, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37425042

RESUMO

Dysregulation of histone deacetylases (HDACs) is closely related to tumor development and progression. As promising anticancer targets, HDACs have gained a great deal of research interests and two decades of effort has led to the approval of five HDAC inhibitors (HDACis). However, currently traditional HDACis, although effective in approved indications, exhibit severe off-target toxicities and low sensitivities against solid tumors, which have urged the development of next-generation of HDACi. This review investigates the biological functions of HDACs, the roles of HDACs in oncogenesis, the structural features of different HDAC isoforms, isoform-selective inhibitors, combination therapies, multitarget agents and HDAC PROTACs. We hope these data could inspire readers with new ideas to develop novel HDACi with good isoform selectivity, efficient anticancer effect, attenuated adverse effect and reduced drug resistance.

2.
Med Res Rev ; 42(3): 1064-1110, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34791703

RESUMO

Protein tyrosine phosphatases (PTPs) superfamily catalyzes tyrosine de-phosphorylation which affects a myriad of cellular processes. Imbalance in signal pathways mediated by PTPs has been associated with development of many human diseases including cancer, metabolic, and immunological diseases. Several compelling evidence suggest that many members of PTP family are novel therapeutic targets. However, the clinical development of conventional PTP-based active-site inhibitors originally was hampered by the poor selectivity and pharmacokinetic properties. In this regard, PTPs has been widely dismissed as "undruggable." Nonetheless, allosteric modulation has become increasingly an influential and alternative approach that can be exploited for drug development against PTPs. Unlike active-site inhibitors, allosteric inhibitors exhibit a remarkable target-selectivity, drug-likeness, potency, and in vivo activity. Intriguingly, there has been a high interest in novel allosteric PTPs inhibitors within the last years. In this review, we focus on the recent advances of allosteric inhibitors that have been explored in drug discovery and have shown an excellent result in the development of PTPs-based therapeutics. A special emphasis is placed on the structure-activity relationship and molecular mechanistic studies illustrating applications in chemical biology and medicinal chemistry.


Assuntos
Inibidores Enzimáticos , Proteínas Tirosina Fosfatases , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
3.
J Immunol Res ; 2021: 9921620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471644

RESUMO

INTRODUCTION: Cryptococcosis is a ubiquitous opportunistic fungal disease caused by Cryptococcus neoformans var. grubii. It has high global morbidity and mortality among HIV patients and non-HIV carriers with 99% and 95%, respectively. Furthermore, the increasing prevalence of undesired toxicity profile of antifungal, multidrug-resistant organisms and the scarcity of FDA-authorized vaccines were the hallmark in the present days. This study was undertaken to design a reliable epitope-based peptide vaccine through targeting highly conserved immunodominant heat shock 70 kDa protein of Cryptococcus neoformans var. grubii that covers a considerable digit of the world population through implementing a computational vaccinology approach. MATERIALS AND METHODS: A total of 38 sequences of Cryptococcus neoformans var. grubii's heat shock 70 kDa protein were retrieved from the NCBI protein database. Different prediction tools were used to analyze the aforementioned protein at the Immune Epitope Database (IEDB) to discriminate the most promising T-cell and B-cell epitopes. The proposed T-cell epitopes were subjected to the population coverage analysis tool to compute the global population's coverage. Finally, the T-cell projected epitopes were ranked based on their binding scores and modes using AutoDock Vina software. Results and Discussion. The epitopes (ANYVQASEK, QSEKPKNVNPVI, SEKPKNVNPVI, and EKPKNVNPVI) had shown very strong binding affinity and immunogenic properties to B-cell. (FTQLVAAYL, YVYDTRGKL) and (FFGGKVLNF, FINAQLVDV, and FDYALVQHF) exhibited a very strong binding affinity to MHC-I and MHC-II, respectively, with high population coverage for each, while FYRQGAFEL has shown promising results in terms of its binding profile to MHC-II and MHC-I alleles and good strength of binding when docked with HLA-C∗12:03. In addition, there is massive global population coverage in the three coverage modes. Accordingly, our in silico vaccine is expected to be the future epitope-based peptide vaccine against Cryptococcus neoformans var. grubii that covers a significant figure of the entire world citizens.


Assuntos
Cryptococcus neoformans/imunologia , Proteínas Fúngicas/imunologia , Vacinas Fúngicas/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Biologia Computacional , Desenho Assistido por Computador , Criptococose/imunologia , Criptococose/microbiologia , Cryptococcus neoformans/genética , Mapeamento de Epitopos , Epitopos de Linfócito B , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Proteínas Fúngicas/genética , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Antígenos HLA-C/imunologia , Antígenos HLA-C/metabolismo , Proteínas de Choque Térmico HSP70/genética , Humanos , Imunogenicidade da Vacina , Simulação de Acoplamento Molecular , Desenvolvimento de Vacinas/métodos , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
4.
J Immunol Res ; 2021: 8280925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34036109

RESUMO

BACKGROUND: Candida glabrata is a human opportunistic pathogen that can cause life-threatening systemic infections. Although there are multiple effective vaccines against fungal infections and some of these vaccines are engaged in different stages of clinical trials, none of them have yet been approved by the FDA. AIM: Using immunoinformatics approach to predict the most conserved and immunogenic B- and T-cell epitopes from the fructose bisphosphate aldolase (Fba1) protein of C. glabrata. Material and Method. 13 C. glabrata fructose bisphosphate aldolase protein sequences (361 amino acids) were retrieved from NCBI and presented in several tools on the IEDB server for prediction of the most promising epitopes. Homology modeling and molecular docking were performed. RESULT: The promising B-cell epitopes were AYFKEH, VDKESLYTK, and HVDKESLYTK, while the promising peptides which have high affinity to MHC I binding were AVHEALAPI, KYFKRMAAM, QTSNGGAAY, RMAAMNQWL, and YFKEHGEPL. Two peptides, LFSSHMLDL and YIRSIAPAY, were noted to have the highest affinity to MHC class II that interact with 9 alleles. The molecular docking revealed that the epitopes QTSNGGAAY and LFSSHMLDL have the lowest binding energy to MHC molecules. CONCLUSION: The epitope-based vaccines predicted by using immunoinformatics tools have remarkable advantages over the conventional vaccines in that they are more specific, less time consuming, safe, less allergic, and more antigenic. Further in vivo and in vitro experiments are needed to prove the effectiveness of the best candidate's epitopes (QTSNGGAAY and LFSSHMLDL). To the best of our knowledge, this is the first study that has predicted B- and T-cell epitopes from the Fba1 protein by using in silico tools in order to design an effective epitope-based vaccine against C. glabrata.


Assuntos
Candida glabrata/imunologia , Candidíase/terapia , Frutose-Bifosfato Aldolase/imunologia , Proteínas Fúngicas/imunologia , Vacinas Fúngicas/imunologia , Sequência de Aminoácidos/genética , Candida glabrata/enzimologia , Candida glabrata/genética , Candidíase/imunologia , Candidíase/microbiologia , Biologia Computacional , Sequência Conservada/genética , Sequência Conservada/imunologia , Desenho de Fármacos , Mapeamento de Epitopos/métodos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/ultraestrutura , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/ultraestrutura , Humanos , Imunogenicidade da Vacina/genética , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
5.
Acta Pharm Sin B ; 11(12): 3908-3924, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024315

RESUMO

Encoded by PTPN11, the SHP2 (Src homology-2 domain-containing protein tyrosine phosphatase-2) is widely recognized as a carcinogenic phosphatase. As a promising anti-cancer drug target, SHP2 regulates many signaling pathways such as RAS-RAF-ERK, PI3K-AKT and JAK-STAT. Meanwhile, SHP2 plays a significant role in regulating immune cell function in the tumor microenvironment. Heretofore, five SHP2 allosteric inhibitors have been recruited in clinical studies for the treatment of cancer. Most recently, studies have proved the therapeutic potential of SHP2 inhibitor in overcoming drug resistance of kinase inhibitors and programmed cell death-1 (PD-1) blockade. Herein, we review the structure, function and small molecular inhibitors of SHP2, and highlight recent progress in overcoming drug resistance using SHP2 inhibitor. We hope this review would facilitate the future clinical development of SHP2 inhibitors.

6.
Curr Med Chem ; 28(24): 4893-4909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33208057

RESUMO

The PROTAC (PROteolysis TArgeting Chimera) technology is a target protein degradation strategy, based on the ubiquitin-proteasome system, which has been gradually developed into a potential means of targeted cancer therapy in recent years. This strategy has already shown significant advantages over traditional small-molecule inhibitors in terms of pharmacodynamics, selectivity, and drug resistance. Several small molecule PROTACs have been in Phase I clinical trial. Herein, we have introduced the mechanism, characteristics, and advantages of PROTAC strategy. And we have summarized the recent advances in the development of small-molecule PROTACs for cancer treatment. We hope this review will be helpful in optimizing the design of the ideal small- molecule PROTACs and advancing targeted anticancer research.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
7.
Expert Opin Investig Drugs ; 30(1): 61-76, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33183110

RESUMO

Introduction: Cyclin-dependent kinase 7 (CDK7) is a part of the CDK-activating kinase family (CAK) which has a key role in the cell cycle and transcriptional regulation. Several lines of evidence suggest that CDK7 is a promising therapeutic target for cancer. CDK7 selective inhibitors such as SY-5609 and CT7001 are in clinical development. Areas covered: We explore the biology of CDK7 and its role in cancer and follow this with an evaluation of the preclinical and clinical progress of CDK7 inhibitors, and their potential in the clinic. We searched PubMed and ClinicalTrials to identify relevant data from the database inception to 14 October 2020. Expert opinion: CDK7 inhibitors are next generation therapeutics for cancer. However, there are still challenges which include selectively, side effects, and drug resistance. Nevertheless, with ongoing clinical development of these inhibitors and greater analysis of their target, CDK7 inhibitors will become a promising approach for treatment of cancer in the near future.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Desenvolvimento de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Quinase Ativadora de Quinase Dependente de Ciclina
9.
J Med Chem ; 63(20): 12083-12099, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33021789

RESUMO

Inspired by the synergistic effect of BTSA1 (a Bax activator) and SAHA (a histone deacetylase (HDAC) inhibitor) in HeLa cell growth suppression, a series of novel HDAC-Bax multiple ligands were designed rationally. Compound 23, which possesses similar HDAC inhibitory activity relative to SAHA and Bax affinity comparable to BTSA1, exhibits a superior growth suppression against HeLa cells, and its antiproliferative activities are 15-fold and 3-fold higher than BTSA1 and SAHA, respectively. The better antiproliferative activity and lower cytotoxicity of compound 23 indicated that our HDAC-Bax multiple ligand design strategy achieved success. Further studies suggested that compound 23 could enhance Bax-dependent apoptosis by upregulating Bax, followed by inducing the conformational activation of Bax. To our knowledge, we first report HDAC-Bax multiple ligands and demonstrate a new paradigm for the treatment of solid tumors by enhancing Bax-dependent apoptosis.


Assuntos
Acetofenonas/farmacologia , Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Proteína X Associada a bcl-2/metabolismo , Acetofenonas/síntese química , Acetofenonas/química , Animais , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Coelhos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA