RESUMO
Since graphene possesses distinct electrical and material properties that could improve material performance, there is currently a growing demand for graphene-based electronics and applications. Numerous potential applications for graphene include lightweight and high-strength polymeric composite materials. Due to its structural qualities, which include low thickness and compact 2D dimensions, it has also been recognized as a promising nanomaterial for water-barrier applications. For barrier polymer applications, it is usually applied using two main strategies. The first is the application of graphene, graphene oxide (GO), and reduced graphene oxide (rGO) to polymeric substrates through transfer or coating. In the second method, fully exfoliated GO or rGO is integrated into the material. This study provides an overview of the most recent findings from research on the use of graphene in the context of water-barrier applications. The advantages and current limits of graphene-based composites are compared with those of other nanomaterials utilized for barrier purposes in order to emphasize difficult challenges for future study and prospective applications.
Assuntos
Grafite , Polímeros , Grafite/química , Polímeros/química , Águas Residuárias , ÁguaRESUMO
Hybrid polymer films of polyvinyl pyrrolidone (PVP)/polyvinyl alcohol (PVA) embedded with gradient levels of Bi-powder were prepared using a conventional solution casting process. XRD, FTIR, and SEM techniques have been used to examine the micro/molecular structure and morphology of the synthesized flexible films. The intensities of the diffraction peaks and transmission spectrum of the PVP/PVA gradually declined with the introduction of Bi-metal. In addition, filler changes the microstructure surface of the pure film. The modification in the microstructure leads to an enhancement in the optical absorption characteristic of the blend films. The indirect allowed transition energy was calculated via Tauc's and ASF (Absorption Spectra Fitting) models. The decrease in the hybrid film's bandgap returns to the localized states in the forbidden region, which led the present films to be suitable for photo-electric, solar cell, etc., applications. The relation between the transition energy and the refractive index was studied. The enhancement in the refractive index with Bi-metal concentrations led to use the as-prepared films in optical sensors. The rise of Bi-metal concentrations leads also to the improvement of the nonlinear susceptibility and refractive parameters. The optical limiting characteristics revealed that the higher concentration dopant films reduce the light transmission intensity which is appropriate for laser attenuation and optical limiting in photonic devices. The results suggest that hybrid films are promising materials in a wide range of opto-electronic applications.