Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biomed Opt Express ; 15(5): 3200-3215, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855662

RESUMO

The therapeutic application of blue light (380 - 500nm) has garnered considerable attention in recent years as it offers a non-invasive approach for the management of prevalent skin conditions including acne vulgaris and atopic dermatitis. These conditions are often characterised by an imbalance in the microbial communities that colonise our skin, termed the skin microbiome. In conditions including acne vulgaris, blue light is thought to address this imbalance through the selective photoexcitation of microbial species expressing wavelength-specific chromophores, differentially affecting skin commensals and thus altering the relative species composition. However, the abundance and diversity of these chromophores across the skin microbiota remains poorly understood. Similarly, devices utilised for studies are often bulky and poorly characterised which if translated to therapy could result in reduced patient compliance. Here, we present a clinically viable micro-LED illumination platform with peak emission 450 nm (17 nm FWHM) and adjustable irradiance output to a maximum 0.55 ± 0.01 W/cm2, dependent upon the concentration of titanium dioxide nanoparticles applied to an accompanying flexible light extraction substrate. Utilising spectrometry approaches, we characterised the abundance of prospective blue light chromophores across skin commensal bacteria isolated from healthy volunteers. Of the strains surveyed 62.5% exhibited absorption peaks within the blue light spectrum, evidencing expression of carotenoid pigments (18.8%, 420-483 nm; Micrococcus luteus, Kocuria spp.), porphyrins (12.5%, 402-413 nm; Cutibacterium spp.) and potential flavins (31.2%, 420-425 nm; Staphylococcus and Dermacoccus spp.). We also present evidence of the capacity of these species to diminish irradiance output when combined with the micro-LED platform and in turn how exposure to low-dose blue light causes shifts in observed absorbance spectra peaks. Collectively these findings highlight a crucial deficit in understanding how microbial chromophores might shape response to blue light and in turn evidence of a micro-LED illumination platform with potential for clinical applications.

2.
ACS Appl Nano Mater ; 7(8): 9159-9166, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38694721

RESUMO

Luminescent supraparticles of colloidal semiconductor nanocrystals can act as microscopic lasers and are hugely attractive for biosensing, imaging, and drug delivery. However, biointerfacing these to increase functionality while retaining their main optical properties remains an unresolved challenge. Here, we propose and demonstrate red-emitting, silica-coated CdSxSe1-x/ZnS colloidal quantum dot supraparticles functionalized with a biotinylated photocleavable ligand. The success of each step of the synthesis is confirmed by scanning electron microscopy, energy dispersive X-ray and Fourier transform infrared spectroscopy, ζ-potential, and optical pumping measurements. The capture and release functionality of the supraparticle system is proven by binding to a neutravidin functionalized glass slide and subsequently cleaving off after UV-A irradiation. The biotinylated supraparticles still function as microlasers; e.g., a 9 µm diameter supraparticle has oscillating modes around 625 nm at a threshold of 58 mJ/cm2. This work is a first step toward using supraparticle lasers as enhanced labels for bionano applications.

3.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833863

RESUMO

The surface functionalisation of self-assembled colloidal quantum dot supraparticle lasers with a thrombin binding aptamer (TBA-15) has been demonstrated. The self-assembly of CdSSe/ZnS alloyed core/shell microsphere-shape CQD supraparticles emitting at 630 nm was carried out using an oil-in-water emulsion technique, yielding microspheres with an oleic acid surface and an average diameter of 7.3 ± 5.3 µm. Surface modification of the microspheres was achieved through a ligand exchange with mercaptopropionic acid and the subsequent attachment of TBA-15 using EDC/NHS coupling, confirmed by zeta potential and Fourier transform IR spectroscopy. Lasing functionality between 627 nm and 635 nm was retained post-functionalisation, with oleic acid- and TBA-coated microspheres exhibiting laser oscillation with thresholds as low as 4.10 ± 0.37 mJ·cm-2 and 7.23 ± 0.78 mJ·cm-2, respectively.


Assuntos
Aptâmeros de Nucleotídeos , Pontos Quânticos , Aptâmeros de Nucleotídeos/química , Ácido Oleico , Luz , Lasers
4.
Nanoscale Adv ; 1(9): 3388-3391, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36133564

RESUMO

We report unprecedented phase stability of cubic CsPbBr3 quantum dots in ambient air obtained by using Br2 as halide precursor. Mechanistic investigation reveals the decisive role of temperature-controlled in situ generated, oleylammonium halide species from molecular halogen and amine for the long term stability and emission tunability of CsPbX3 (X = Br, I) nanocrystals.

5.
Chemistry ; 24(68): 17915-17920, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30222219

RESUMO

Octahedral molybdenum and tungsten clusters have potential biological applications in photodynamic therapy and bioimaging. However, poor solubility and hydrolysis stability of these compounds hinder their application. The first water-soluble photoluminescent octahedral tungsten cluster [{W6 I8 }(DMSO)6 ](NO3 )4 was synthesised and demonstrated to be at least one order of magnitude more stable towards hydrolysis than its molybdenum analogue. Biological studies of the compound on larynx carcinoma cells suggest that it has a significant photoinduced toxicity, while the dark toxicity increases with the increase of the degree of hydrolysis. The increase of the dark toxicity is associated with the in situ generation of nanoparticles that clog up the cisternae of rough endoplasmic reticulum.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Molibdênio/química , Molibdênio/farmacologia , Tungstênio/química , Tungstênio/farmacologia , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Células Hep G2 , Humanos , Hidrólise , Luz , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Processos Fotoquímicos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
6.
Chem Commun (Camb) ; 54(26): 3227-3230, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29528355

RESUMO

A selective fluorescent probe for Zn(ii), AQA-F, has been synthesized. AQA-F exhibits a ratiometric shift in emission of up to 80 nm upon binding Zn(ii) ([AQA-F] = 0.1 mM, [Zn(ii)Cl2] = 0-300 µM). An enhancement of quantum yield from Φ = 4.2% to Φ = 35% is also observed. AQA-F has a binding constant, Kd = 15.2 µM with Zn(ii). This probe has been shown to respond to endogenous Zn(ii) levels in vitro in prostate and prostate cancer cell lines. [18F]AQA-F has been synthesized with a radiochemical yield of 8.6% and a radiochemical purity of 97% in 88 minutes. AQA-F shows the potential for a dual modal PET/fluorescence imaging probe for Zn(ii).


Assuntos
Complexos de Coordenação/química , Corantes Fluorescentes/química , Microscopia de Fluorescência , Tomografia por Emissão de Pósitrons , Zinco/análise , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Radioisótopos de Flúor/química , Humanos , Marcação por Isótopo , Masculino , Próstata/patologia , Neoplasias da Próstata/patologia , Espectrometria de Fluorescência
7.
Chempluschem ; 82(5): 674-680, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-31961531

RESUMO

A novel SERS/fluorescent multimodal imaging probe for mitochondria has been synthesised using 12 nm diameter gold nanoparticles (AuNP) surface functionalised with a rhodamine thiol derivative ligand. The normal pH-dependent fluorescence of the rhodamine-based ligand is inversed when it is conjugated with the AuNP and higher emission intensity is observed at basic pH. This switch correlates to a pKa at pH 6.62, which makes it an ideal candidate for a pH-sensitive imaging probe in the biological range (pH 6.5-7.4). The observed pH sensitivity of the ligand when attached to the AuNP is thought to be due to the formation of a spirolactam ring, going from positively charged (+18 mV) to negatively charged (-60 mV) as the pH is changed from acidic to basic. Additionally, conjugation of the ligand to the AuNP serves to enhance the Raman signal of the rhodamine ligand through surface-enhanced Raman scattering (SERS). Confocal microscopy has shown that the probe enters HEK293 (kidney), A2780 (ovarian cancer) and Min6 (pancreatic beta) cells within an hour and a half incubation time. The probe was shown to localise in the mitochondria, thus providing a novel pH-dependent SERS/fluorescent multimodal imaging probe for mitochondria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA