Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
mSphere ; : e0047824, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140728

RESUMO

Ascaris is one of the most widespread helminth infections, leading to chronic morbidity in humans and considerable economic losses in pig farming. In addition, pigs are an important reservoir for the zoonotic salmonellosis, where pigs can serve as asymptomatic carriers. Here, we investigated the impact of an ongoing Ascaris infection on the immune response to Salmonella in pigs. We observed higher bacterial burdens in experimentally coinfected pigs compared to pigs infected with Salmonella alone. The impaired control of Salmonella in the coinfected pigs was associated with repressed interferon gamma responses in the small intestine and with the alternative activation of gut macrophages evident in elevated CD206 expression. Ascaris single and coinfection were associated with a rise of CD4-CD8α+FoxP3+ Treg in the lymph nodes draining the small intestine and liver. In addition, macrophages from coinfected pigs showed enhanced susceptibility to Salmonella infection in vitro and the Salmonella-induced monocytosis and tumor necrosis factor alpha production by myeloid cells was repressed in pigs coinfected with Ascaris. Hence, our data indicate that acute Ascaris infection modulates different immune effector functions with important consequences for the control of tissue-invasive coinfecting pathogens.IMPORTANCEIn experimentally infected pigs, we show that an ongoing infection with the parasitic worm Ascaris suum modulates host immunity, and coinfected pigs have higher Salmonella burdens compared to pigs infected with Salmonella alone. Both infections are widespread in pig production and the prevalence of Salmonella is high in endemic regions of human Ascariasis, indicating that this is a clinically meaningful coinfection. We observed the type 2/regulatory immune response to be induced during an Ascaris infection correlates with increased susceptibility of pigs to the concurrent bacterial infection.

2.
Sci Rep ; 14(1): 14919, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942904

RESUMO

Helminth infections lead to an overdispersion of the parasites in humans as well as in animals. We asked whether early immune responses against migrating Ascaris larvae are responsible for the unequal distribution of worms in natural host populations and thus investigated a susceptible versus a resistant mouse strain. In mice, the roundworm larvae develop until the lung stage and thus early anti-Ascaris immune responses against the migrating larvae in the liver and lung can be deciphered. Our data show that susceptible C57BL/6 mice respond to Ascaris larval migration significantly stronger compared to resistant CBA mice and the anti-parasite reactivity is associated with pathology. Increased eosinophil recruitment was detected in the liver and lungs, but also in the spleen and peritoneal cavity of susceptible mice on day 8 post infection compared to resistant mice. In serum, eosinophil peroxidase levels were significantly higher only in the susceptible mice, indicating functional activity of the recruited eosinophils. This effect was associated with an increased IL-5/IL-13 production by innate lymphoid cells and CD4+ T cells and a pronounced type 2 macrophage polarization in the lungs of susceptible mice. Furthermore, a comparison of wildtype BALB/c and eosinophil-deficient dblGATA-1 BALB/c mice showed that eosinophils were not essential for the early control of migrating Ascaris larvae. In conclusion, in primary infection, a strong local and systemic type 2 immune response during hepato-tracheal helminth larval migration is associated with pathology rather than protection.


Assuntos
Ascaríase , Larva , Pulmão , Camundongos Endogâmicos BALB C , Células Th2 , Animais , Ascaríase/imunologia , Ascaríase/parasitologia , Larva/imunologia , Camundongos , Células Th2/imunologia , Pulmão/parasitologia , Pulmão/imunologia , Pulmão/patologia , Ascaris/imunologia , Eosinófilos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Fígado/parasitologia , Fígado/imunologia , Fígado/patologia , Feminino
3.
Front Immunol ; 15: 1396446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799456

RESUMO

Ascaris spp. undergo extensive migration within the body before establishing patent infections in the small intestinal tract of humans and pigs. However, whether larval migration is critical for inducing efficient type 2 responses remains poorly understood. Therefore, we investigated systemic versus local adaptive immune responses along the hepato-tracheal migration of Ascaris suum during primary, single infections in conventionally raised pigs. Neither the initial invasion of gut tissue nor migration through the liver resulted in discernable Th2 cell responses. In contrast, lung-stage larvae elicited a Th2-biased pulmonary response, which declined after the larvae had left the lungs. In the small intestine, we observed an accumulation of Th2 cells upon the arrival of fourth-stage larvae (L4) to the small intestinal lumen. In parallel, we noticed robust and increasing Th1 responses in circulation, migration-affected organs, and draining lymph nodes. Phenotypic analysis of CD4+ T cells specifically recognizing A. suum antigens in the circulation and lung tissue of infected pigs confirmed that the majority of Ascaris-specific T cells produced IL-4 (Th2) and, to a much lesser extent, IL-4/IFN-g (Th2/1 hybrids) or IFN-g alone (Th1). These data demonstrate that lung-stage but not the early liver-stage larvae lead to a locally restricted Th2 response. Significant Th2 cell accumulation in the small intestine occurs only when L4 complete the body migration. In addition, Th2 immunity seems to be hampered by the concurrent, nonspecific Th1 bias in growing pigs. Together, the late onset of Th2 immunity at the site of infection and the Th1-biased systemic immunity likely enable the establishment of intestinal infections by sufficiently large L4 stages and pre-adult worms, some of which resist expulsion mechanisms.


Assuntos
Ascaríase , Ascaris suum , Células Th1 , Células Th2 , Animais , Ascaris suum/imunologia , Ascaríase/imunologia , Ascaríase/parasitologia , Células Th2/imunologia , Suínos , Células Th1/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/parasitologia , Pulmão/imunologia , Pulmão/parasitologia , Larva/imunologia , Citocinas/metabolismo
4.
Eur J Immunol ; 53(5): e2250237, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36781418

RESUMO

Parasitic nematodes infect more than 1 billion people in the global south. The development of effective antihelminthic vaccines is a crucial tool for their future elimination. Protective immune responses to nematodes depend on Gata3+ Th2 cells, which can also be induced by nematode-released products. Whether these nematode products induce antigen-specific long-lived memory T cells and thereby confer protection against a challenge infection is not known yet. Hence, we set out to characterize the formation of memory Th2 cells induced by immunization with Heligmosomoides polygyrus excretory-secretory (HES) products, infection-induced versus immunization-induced recall responses to a challenge infection, and whether HES-induced memory T cells show protective properties following adoptive transfer. Our results show that 8 weeks postimmunization, HES induces long-lived functional memory Th2 cells at the site of immunization in the peritoneal cavity. Following a H. polygyrus challenge infection, HES-immunized mice display MHC-II-dependent antigen-specific Th2 cytokine responses in the gut-draining lymph nodes, comparable to those induced by a prior natural infection. Moreover, adoptive transfer of sorted memory CD4+ T cells from HES-immunized donors reduces female worm fecundity following a challenge H. polygyrus infection in recipient mice, highlighting a protective role for immunization-induced memory T cells.


Assuntos
Nematoides , Nematospiroides dubius , Infecções por Strongylida , Camundongos , Feminino , Animais , Células Th2 , Imunização , Citocinas , Vacinação , Camundongos Endogâmicos BALB C
5.
Parasite Immunol ; 45(4): e12957, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36396405

RESUMO

Antibiotic treatment can lead to elimination of both pathogenic bacteria and beneficial commensals, as well as to altered host immune responses. Here, we investigated the influence of prolonged antibiotic treatment (Abx) on effector, memory and recall Th2 immune responses during the primary infection, memory phase and secondary infection with the small intestinal nematode Heligmosomoides polygyrus. Abx treatment significantly reduced gut bacterial loads, but neither worm burdens, nor worm fecundity in primary infection were affected, only worm burdens in secondary infection were elevated in Abx treated mice. Abx mice displayed trends for elevated effector and memory Th2 responses during primary infection, but overall frequencies of Th2 cells in the siLP, PEC, mLN and in the spleen were similar between Abx treated and untreated groups. Gata3+ effector and memory Th2 cytokine responses also remained unimpaired by prolonged Abx treatment. Similarly, the energy production and defence mechanisms of the host tissue and the parasite depicted by NAD(P)H fluorescence lifetime imaging (FLIM) did not change by the prolonged use of antibiotics. We show evidence that the host Th2 response to intestinal nematodes, as well as host and parasite metabolic pathways are robust and remain unimpaired by host microbiota abrogation.


Assuntos
Coinfecção , Microbiota , Nematoides , Nematospiroides dubius , Infecções por Strongylida , Animais , Camundongos , Citocinas/metabolismo , Células Th2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA