Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
ACS Omega ; 9(14): 15861-15881, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617602

RESUMO

AIM: The aim of this study was to design and examine a novel epidermal growth factor receptor (EGFR) inhibitor with apoptotic properties by utilizing the essential structural characteristics of existing EGFR inhibitors as a foundation. METHOD: The study began with the natural alkaloid theobromine and developed a new semisynthetic derivative (T-1-PMPA). Computational ADMET assessments were conducted first to evaluate its anticipated safety and general drug-likeness. Deep density functional theory (DFT) computations were initially performed to validate the three-dimensional (3D) structure and reactivity of T-1-PMPA. Molecular docking against the EGFR proteins was conducted to investigate T-1-PMPA's binding affinity and inhibitory potential. Additional molecular dynamics (MD) simulations over 200 ns along with MM-GPSA, PLIP, and principal component analysis of trajectories (PCAT) experiments were employed to verify the binding and inhibitory properties of T-1-PMPA. Afterward, T-1-PMPA was semisynthesized to validate the proposed design and in silico findings through several in vitro examinations. RESULTS: DFT studies indicated T-1-PMPA's reactivity using electrostatic potential, global reactive indices, and total density of states. Molecular docking, MD simulations, MM-GPSA, PLIP, and ED suggested the binding and inhibitory properties of T-1-PMPA against the EGFR protein. The in silico ADMET predicted T-1-PMPA's safety and general drug-likeness. In vitro experiments demonstrated that T-1-PMPA effectively inhibited EGFRWT and EGFR790m, with IC50 values of 86 and 561 nM, respectively, compared to Erlotinib (31 and 456 nM). T-1-PMPA also showed significant suppression of the proliferation of HepG2 and MCF7 malignant cell lines, with IC50 values of 3.51 and 4.13 µM, respectively. The selectivity indices against the two cancer cell lines indicated the overall safety of T-1-PMPA. Flow cytometry confirmed the apoptotic effects of T-1-PMPA by increasing the total percentage of apoptosis to 42% compared to 31, and 3% in Erlotinib-treated and control cells, respectively. The qRT-PCR analysis further supported the apoptotic effects by revealing significant increases in the levels of Casp3 and Casp9. Additionally, T-1-PMPA controlled the levels of TNFα and IL2 by 74 and 50%, comparing Erlotinib's values (84 and 74%), respectively. CONCLUSION: In conclusion, our study's findings suggest the potential of T-1-PMPA as a promising apoptotic anticancer lead compound targeting the EGFR.

2.
Biochim Biophys Acta Gen Subj ; 1868(6): 130599, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521471

RESUMO

BACKGROUND: VEGFR-2 has emerged as a prominent positive regulator of cancer progression. AIM: Discovery of new anticancer agents and apoptotic inducers targeting VEGFR-2. METHODS: Design and synthesis of new thiazolidine-2,4-diones followed by extensive in vitro studies, including VEGFR-2 inhibition assay, MTT assay, apoptosis analysis, and cell migration assay. In silico investigations including docking, MD simulations, ADMET, toxicity, and DFT studies were performed. RESULTS: Compound 15 showed the strongest VEGFR-2 inhibitory activity with an IC50 value of 0.066 µM. Additionally, most of the synthesized compounds showed anti-proliferative activity against HepG2 and MCF-7 cancer cell lines at the micromolar range with IC50 values ranging from 0.04 to 4.71 µM, relative to sorafenib (IC50 = 2.24 ± 0.06 and 3.17 ± 0.01 µM against HepG2 and MCF-7, respectively). Also, compound 15 showed selectivity indices of 1.36 and 2.08 against HepG2 and MCF-7, respectively. Furthermore, compound 15 showed a significant apoptotic effect and arrested the cell cycle of MCF-7 cells at the S phase. Moreover, compound 15 had a significant inhibitory effect on the ability of MCF-7 cells to heal from. Docking studies revealed that the synthesized thiazolidine-2,4-diones have a binding pattern approaching sorafenib. MD simulations indicated the stability of compound 15 in the active pocket of VEGFR-2 for 200 ns. ADMET and toxicity studies indicated an acceptable pharmacokinetic profile. DFT studies confirmed the ability of compound 15 to interact with VEGFR-2. CONCLUSION: Compound 15 has promising anticancer activity targeting VEGFR-2 with significant activity as an apoptosis inducer.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Desenho de Fármacos , Simulação de Acoplamento Molecular , Tiazolidinedionas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Tiazolidinedionas/química , Tiazolidinedionas/síntese química , Células MCF-7 , Células Hep G2 , Proliferação de Células/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Ensaios de Seleção de Medicamentos Antitumorais , Sorafenibe/farmacologia , Sorafenibe/química , Simulação de Dinâmica Molecular , Movimento Celular/efeitos dos fármacos
3.
Heliyon ; 10(2): e24005, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298627

RESUMO

In this study, a series of seven novel 2,4-dioxothiazolidine derivatives with potential anticancer and VEGFR-2 inhibiting abilities were designed and synthesized as VEGFR-2 inhibitors. The synthesized compounds were tested in vitro for their potential to inhibit VEGFR-2 and the growth of HepG2 and MCF-7 cancer cell lines. Among the compounds tested, compound 22 (IC50 = 0.079 µM) demonstrated the highest anti-VEGFR-2 efficacy. Furthermore, it demonstrated significant anti-proliferative activities against HepG2 (IC50 = 2.04 ± 0.06 µM) and MCF-7 (IC50 = 1.21 ± 0.04 M). Additionally, compound 22 also increased the total apoptotic rate of the MCF-7 cancer cell lines with cell cycle arrest at S phase. As well, computational methods were applied to study the VEGFR-2-22 complex at the molecular level. Molecular docking and molecular dynamics (MD) simulations were used to investigate the complex's structural and kinetic characteristics. The DFT calculations further revealed the structural and electronic properties of compound 22. Finally, computational ADMET and toxicity tests were performed indicating the likeness of the proposed compounds to be drugs. The results suggest that compound 22 displays promise as an effective anticancer treatment and can serve as a model for future structural modifications and biological investigations in this field.

4.
PeerJ ; 12: e16826, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313021

RESUMO

This study aimed to investigate the potential of patuletin, a rare natural flavonoid, as a virulence and LasR inhibitor against Pseudomonas aeruginosa. Various computational studies were utilized to explore the binding of Patuletin and LasR at a molecular level. Molecular docking revealed that Patuletin strongly interacted with the active pocket of LasR, with a high binding affinity value of -20.96 kcal/mol. Further molecular dynamics simulations, molecular mechanics generalized Born surface area (MM/GBSA), protein-ligand interaction profile (PLIP), and essential dynamics analyses confirmed the stability of the patuletin-LasR complex, and no significant structural changes were observed in the LasR protein upon binding. Key amino acids involved in binding were identified, along with a free energy value of -26.9 kcal/mol. In vitro assays were performed to assess patuletin's effects on P. aeruginosa. At a sub-inhibitory concentration (1/4 MIC), patuletin significantly reduced biofilm formation by 48% and 42%, decreased pyocyanin production by 24% and 14%, and decreased proteolytic activities by 42% and 20% in P. aeruginosa isolate ATCC 27853 (PA27853) and P. aeruginosa clinical isolate (PA1), respectively. In summary, this study demonstrated that patuletin effectively inhibited LasR activity in silico and attenuated virulence factors in vitro, including biofilm formation, pyocyanin production, and proteolytic activity. These findings suggest that patuletin holds promise as a potential therapeutic agent in combination with antibiotics to combat antibiotic-tolerant P. aeruginosa infections.


Assuntos
Biofilmes , Cromonas , Flavonas , Virulência , Pseudomonas aeruginosa , Percepção de Quorum , Simulação de Acoplamento Molecular , Piocianina/metabolismo , Flavonas/farmacologia
5.
Bioorg Chem ; 145: 107157, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340473

RESUMO

A new panel of N-sulfonylpiperidine derivatives has been designed and synthesized as vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors. Anti-proliferative activities of the synthesized members were tested against colorectal carcinoma (HCT-116), hepatocellular carcinoma (HepG-2), and breast cancer (MCF-7) cell lines. Compounds 3a, 4, 8, and 9 showed the highest activities against the tested cell lines. In particular, compound 8 showed excellent activities against HCT-116, HepG-2, and MCF-7 with IC50 values of 3.94, 3.76, and 4.43 µM, respectively. Such IC50 values are comparable to vinblastine (IC50 = 3.21, 7.35, 5.83 µM, respectively) and doxorubicin (IC50 = 6.74, 7.52, 8.19 µM, respectively). In vitro VEGFR-2 inhibitory activity of the most promising molecules (3a, 4, 8, and 9) indicated that compound 8 is the highest VEGFR-2 inhibitor with an IC50 of 0.0554 µM, compared to sorafenib (IC50 = 0.0416 µM). The most promising candidates (3a, 4, 8, and 9) were subjected to flow cytometry analyses to assess their effects on the cell cycle behavior and the apoptotic power against the three tested cell lines (HCT-116, HepG-2, and MCF-7). The tested compound arrested the tumor cells at both the G2/M and Pre-G1 phases. In addition, compound 9 was proved as the most effective apoptotic inducer among the tested compounds against the tested cells. Molecular docking studies against VEGFR-2 (PDB ID: 2OH4) revealed good binding modes of the synthesized compound similar to that of sorafenib. Computational investigation of ADMET parameters revealed the drug-likeness of the synthesized compounds.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Humanos , Simulação de Acoplamento Molecular , Sorafenibe , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Células MCF-7 , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia
6.
Evol Bioinform Online ; 19: 11769343231217916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046652

RESUMO

The overexpression of the Epidermal Growth Factor Receptor (EGFR) marks it as a pivotal target in cancer treatment, with the aim of reducing its proliferation and inducing apoptosis. This study aimed at the CADD of a new apoptotic EGFR inhibitor. The natural alkaloid, theobromine, was used as a starting point to obtain a new semisynthetic (di-ortho-chloro acetamide) derivative (T-1-DOCA). Firstly, T-1-DOCA's total electron density, energy gap, reactivity indices, and electrostatic surface potential were determined by DFT calculations, Then, molecular docking studies were carried out to predict the potential of T-1-DOCA against wild and mutant EGFR proteins. T-1-DOCA's correct binding was further confirmed by molecular dynamics (MD) over 100 ns, MM-GPSA, and PLIP experiments. In vitro, T-1-DOCA showed noticeable efficacy compared to erlotinib by suppressing EGFRWT and EGFRT790M with IC50 values of 56.94 and 269.01 nM, respectively. T-1-DOCA inhibited also the proliferation of H1975 and HCT-116 malignant cell lines, exhibiting IC50 values of 14.12 and 23.39 µM, with selectivity indices of 6.8 and 4.1, respectively, indicating its anticancer potential and general safety. The apoptotic effects of T-1-DOCA were indicated by flow cytometric analysis and were further confirmed through its potential to increase the levels of BAX, Casp3, and Casp9, and decrease Bcl-2 levels. In conclusion, T-1-DOCA, a new apoptotic EGFR inhibitor, was designed and evaluated both computationally and experimentally. The results suggest that T-1-DOCA is a promising candidate for further development as an anti-cancer drug.

7.
J Biomol Struct Dyn ; : 1-18, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100580

RESUMO

Herin, new nicotinamide candidates were designed and synthesized as VEGFR-2 inhibitors. In vitro antiproliferative activities were assessed against MCF-7, HepG-2 and HCT-116 cancer cell lines. The top cytotoxic members 15a, 15b, 16, 18a, and 18b were estimated against their selected target (VEGFR-2). Further mechanistic tests were studied for the most potent cytotoxic candidate 18a, these studies revealed the ability of compound 18a to hinder the progression of HCT-116 cells at S and Pre-G1phases besides boosting early and late apoptosis. Also compound 18a was found to significantly decrease the levels immunomodulatory proteins TNF-α and IL-6 while showing a four-fold rise in an apoptotic marker caspase-3 when compared to control cells. The therapeutic index of the designed derivatives was evaluated by computational ADMET and toxicity calculations as well as their potentiality to occupy the VEGFR-2 active site was signposted by molecular docking assessments. Finally, molecular dynamic simulation studies of compound 18a-VEGFR-2 complex indicated the high steadiness of compound 18a in the VEGFR-2 active site. This study presents compound 18a as a lead candidate that can be optimized to get a strong VEGFR-2 inhibitor.Communicated by Ramaswamy H. Sarma.

8.
RSC Adv ; 13(51): 35853-35876, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38116168

RESUMO

This work presents the synthesis and in vitro, and in silico analyses of new thiadiazole derivatives that are designed to mimic the pharmacophoric characteristics of vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors. A comprehensive evaluation of the inhibitory properties of the synthesized thiadiazole derivatives against the cancer cell lines MCF-7 and HepG2 identified several auspicious candidates. Among them, compound 14 showed remarkably low IC50 values of 0.04 µM and 0.18 µM against MCF-7 and HepG2, respectively. VEGFR-2 inhibitory evaluation of compound 14 revealed a promising IC50 value in the nanomolar range (103 nM). Further examination of the cell cycle revealed that compound 14 has the ability to stop the progression of the cell cycle in MCF-7 cells via G0-G1 phase arrest. Interestingly, compound 14 also demonstrated a noteworthy pro-apoptotic effect in MCF-7 cells, with notable increases in early apoptosis (16.53%) and late apoptosis (29.57%), along with a slight increase in the population of necrotic cells (5.95%). Furthermore, compound 14 showed a significant drop in MCF-7 cells' ability to migrate and heal wounds. Additionally, compound 14 promoted apoptosis by boosting BAX (6-fold) while lowering Bcl-2 (6.2-fold). The binding affinities of the synthesized candidates to their target (VEGFR-2) were confirmed by computational investigations, including molecular docking, principal component analysis of trajectories (PCAT), and molecular dynamics (MD) simulations. Additionally, compound 14's stability and reactivity were investigated using density functional theory (DFT). These thorough results highlight compound 14's potential as a lead contender for additional research in the creation of anticancer drugs that target VEGFR-2. This work establishes a foundation for promising thiadiazole derivatives for future therapeutic developments in anticancer- and angiogenesis-related scientific fields.

9.
Saudi Pharm J ; 31(12): 101852, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38028225

RESUMO

VEGFR-2 is a significant target in cancer treatment, inhibiting angiogenesis and impeding tumor growth. Utilizing the essential pharmacophoric structural properties, a new semi-synthetic theobromine analogue (T-1-MBHEPA) was designed as VEGFR-2 inhibitor. Firstly, T-1-MBHEPA's stability and reactivity were indicated through several DFT computations. Additionally, molecular docking, MD simulations, MM-GPSA, PLIP, and essential dynamics (ED) experiments suggested T-1-MBHEPA's strong binding capabilities to VEGFR-2. Its computational ADMET profiles were also studied before the semi-synthesis and indicated a good degree of drug-likeness. T-1-MBHEPA was then semi-synthesized to evaluate the design and the in silico findings. It was found that, T-1-MBHEPA inhibited VEGFR-2 with an IC50 value of 0.121 ± 0.051 µM, as compared to sorafenib which had an IC50 value of 0.056 µM. Similarly, T-1-MBHEPA inhibited the proliferation of HepG2 and MCF7 cell lines with IC50 values of 4.61 and 4.85 µg/mL respectively - comparing sorafenib's IC50 values which were 2.24 µg/mL and 3.17 µg/mL respectively. Interestingly, T-1-MBHEPA revealed a noteworthy IC50 value of 80.0 µM against the normal cell lines exhibiting exceptionally high selectivity indexes (SI) of 17.4 and 16. 5 against the examined cell lines, respectively. T-1-MBHEPA increased the percentage of apoptotic MCF7 cells in early and late stages, respectively, from 0.71 % to 7.22 % and from 0.13 % to 2.72 %, while the necrosis percentage was increased to 11.41 %, in comparison to 2.22 % in control cells. Furthermore, T-1-MBHEPA reduced the production of pro-inflammatory cytokines TNF-α and IL-2 in the treated MCF7 cells by 33 % and 58 %, respectively indicating an additional anti-angiogenic mechanism. Also, T-1-MBHEPA decreased significantly the potentialities of MCF7 cells to heal and migrate from 65.9 % to 7.4 %. Finally, T-1-MBHEPA's oral treatment didn't show toxicity on the liver function (ALT and AST) and the kidney function (creatinine and urea) levels of mice.

10.
Future Med Chem ; 15(22): 2065-2086, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37955128

RESUMO

Background: VEGFR-2 is a key regulator of cancer cell proliferation, migration and angiogenesis. Aim: Development of thieno[2,3-d]pyrimidine derivatives as potential anti-cancer agents targeting VEGFR-2. Methods: Seven in vitro and nine in silico studies were conducted. Results: Compound 10d demonstrated strong anticancer potential, boosting apoptosis based on VEGFR-2 inhibition. It arrested the S phase of the cell cycle and upregulated the apoptotic factors. Docking and molecular dynamics simulation studies confirm the stability of the VEGFR-2-10d complex and suggest that these compounds have good binding affinities to VEGFR-2. In addition, the drug-likeness was confirmed. Conclusion: Thieno[2,3-d]pyrimidines, particularly compound 10d, has good anticancer effects and may contribute to the development of new anticancer therapies.

11.
Pathol Res Pract ; 252: 154924, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956639

RESUMO

BACKGROUND: This study focuses on the development and evaluation of (E)-N-(3-(1-(2-(4-bromobenzoyl)hydrazono)ethyl)phenyl)nicotinamide (BHEPN) as a potential inhibitor of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2). METHODS: Computational investigations as density function theory (DFT), docking, molecular dynamics (MD) simulations, and ADMET) in addition to in vitro (VEGFR-2 inhibition, cytotoxicity against HepG2 and MCF-7 cancer cell lines, selectivity index, cells cycle analysis, apoptosis investigation, and cells migration assay) studies were conducted. RESULTS: DFT calculations determined the three-dimensional structure and indicated the reactivity of BHEPN. Molecular docking, and MD simulations analysis showed the BHEPN's binding affinity and its potential as a VEGFR-2 inhibitor. ADMET assessments predicted BHEPN's safety and drug-like characteristics. In vitro investigations confirmed the inhibition of VEGFR-2 with an IC50 value of 0.320 ± 0.012 µM. BHEPN also exhibited remarkable cytotoxic effects against HepG2 and MCF-7 cancer cell lines, with IC50 values of 0.19 ± 0.01 µM and 1.18 ± 0.01 µM, respectively, outperforming Sorafenib's IC50 values (2.24 ± 0.06 µM and 3.17 ± 0.01 µM), respectively. Notably, BHEPN displayed a higher IC50 value of 4.11 ± 0 µM against the non-carcinogenic Vero cell lines, indicating selectivity index values of 21.6 and 3.4 against the tested cancer cell lines, respectively. In a flow cytometry assay, BHEPN induced HepG2 cell cycle arrest at the G1/S phase. Moreover, BHEPN increased the incidence of early and late apoptosis in HepG2 cell lines (from 1.38% and 0.22%) in control cells to (4.11-26.02%) in the treated cells, respectively. Additionally, the percentage of necrosis raised to 13.39%, in contrast to 0.62% in control cells. Finally, BHEPN was able to reduce the migration and wound healing abilities in HepG2 cells to 38.89% compared to 87.92% in untreated cells after 48 h. These in vitro results aligned with the computational predictions, providing strong evidence of BHEPN's efficacy and safety in anticancer applications. CONCLUSIONS: BHEPN is a promising candidate for the development of novel anticancer agents through further in vitro and in vivo investigations.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Simulação de Acoplamento Molecular , Fator A de Crescimento do Endotélio Vascular , Morte Celular , Apoptose , Antineoplásicos/farmacologia , Proliferação de Células , Inibidores de Proteínas Quinases
12.
Curr Pharm Des ; 29(36): 2902-2920, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38031271

RESUMO

OBJECTIVES: This study aims to design and evaluate (in silico and in vitro) a new nicotinamide derivative as an inhibitor of VEGFR-2, a major mediator of angiogenesis Methods: The following in silico studies were performed; DFT calculations, molecular modelling, MD simulations, MM-GBSA, PLIP, and PCAT studies. The compound's in silico (ADMET) analysis was also conducted. Subsequently, the compound ((E)-N-(4-(1-(2-(4-(4-Chlorobenzamido)benzoyl)hydrazono)ethyl) phenyl)nicotinamide) was successfully synthesized and designated as compound X. In vitro, VEGFR-2 inhibition and cytotoxicity of compound X against HCT-116 and A549 cancer cell lines and normal Vero cell lines were conducted. Apoptosis induction and migration assay of HCT-116 cell lines after treatment with compound X were also evaluated. RESULTS: DFT calculations assigned stability and reactivity of compound X. Molecular docking and MD simulations indicated its excellent binding against VEGFR-2. Furthermore, MM-GBSA analysis, PLIP experiments, and PCAT studies confirmed compound X's correct binding with optimal dynamics and energy. ADMET analysis expressed its general likeness and safety. The in vitro assays demonstrated that compound X effectively inhibited VEGFR-2, with an IC50 value of 0.319 ± 0.013 µM and displayed cytotoxicity against HCT-116 and A549 cancer cell lines, with IC50 values of 57.93 and 78.82 µM, respectively. Importantly, compound X exhibited minimal toxicity towards the non-cancerous Vero cell lines, (IC50 = 164.12 µM). Additionally, compound X significantly induced apoptosis of HCT-116 cell lines and inhibited their potential to migrate and heal. CONCLUSION: In summary, the presented study has identified compound X as a promising candidate for the development of a novel apoptotic lead anticancer drug.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Simulação de Acoplamento Molecular , Células A549 , Células HCT116 , Niacinamida/farmacologia , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células , Inibidores de Proteínas Quinases , Ensaios de Seleção de Medicamentos Antitumorais
13.
ChemistryOpen ; 12(10): e202300066, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37803417

RESUMO

A computer-assisted drug design (CADD) approach was utilized to design a new acetamido-N-(para-fluorophenyl)benzamide) derivative of the naturally occurring alkaloid, theobromine, (T-1-APFPB), following the pharmacophoric features of VEGFR-2 inhibitors. The stability and reactivity of T-1-AFPB were assessed through density functional theory (DFT) calculations. Molecular docking assessments showed T-1-AFPB's potential to bind with and inhibit VEGFR-2. The precise binding of T-1-AFPB against VEGFR-2 with optimal energy was further confirmed through several molecular dynamics (MD) simulations, PLIP, MM-GBSA, and PCA studies. Then, T-1-AFPB (4-(2-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)acetamido)-N-(4-fluorophenyl)benzamide) was semi-synthesized and the in vitro assays showed its potential to inhibit VEGFR-2 with an IC50 value of 69 nM (sorafenib's IC50 was 56 nM) and to inhibit the growth of HepG2 and MCF-7 cancer cell lines with IC50 values of 2.24±0.02 and 3.26±0.02 µM, respectively. Moreover, T-1-AFPB displayed very high selectivity indices against normal Vero cell lines. Furthermore, T-1-AFPB induced early (from 0.72 to 19.12) and late (from 0.13 to 6.37) apoptosis in HepG2 cell lines. In conclusion, the combined computational and experimental approaches demonstrated the efficacy and safety of T-1-APFPB providing it as a promising lead VEGFR-2 inhibitor for further development aiming at cancer therapy.


Assuntos
Teobromina , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Células MCF-7 , Benzamidas
14.
Pathol Res Pract ; 251: 154894, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857034

RESUMO

BACKGROUND: The overexpression of VEGFR-2 receptors in breast cancer provides a valuable approach to anticancer strategies. Targeting VEGFR-2, a new semisynthetic compound (T-1-MCPAB) has been designed. METHODS: Computational methods (ADMET, toxicity, DFT, Molecular Docking, Molecular Dynamics Simulations, MM-GBSA, PLIP, and PCAT) were conducted. In addition to the semi-synthesis, in vitro studies (anti-VEGFR-2, anti-proliferative, flow cytometry, and wound scratch assay) were employed. RESULTS: ADME and toxicity profiles of T-1-MCPAB studies indicated its overall drug-likeness showing results much better than Sorafenib. Then, T-1-MCPAB's exact 3D structure, stability, and reactivity were evoked by the DFT calculations. Molecular docking, molecular dynamics simulations, MM-GPSA, PLIP, and PCAT studies denoted the correct binding and inhibiting potential of T-1-MCPAB, towards VEGFR-2 protein. After the semisynthesis, T-1-MCPAB inhibited VEGFR-2 with an IC50 of 0.135 µM, which was comparable to sorafenib's IC50 of 0.0591 µM. T-1-MCPAB also showed a notable performance against MCF7 and T47D breast cancer cell lines with IC50 values of 30.95 µM and 63.64 µM, respectively, and had high selectivity index values of 3.7 and 1.8, respectively. Furthermore, T-1-MCPAB influenced early and late apoptosis and significantly decreased the potential of MCF7 cells to heal and migrate. CONCLUSION: T-1-MCPAB is a promising VEGFR-2 inhibitor with potential for breast cancer treatment. Further chemical and biological studies are needed to explore its potential as a therapeutic agent.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Simulação de Acoplamento Molecular , Sorafenibe/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Proliferação de Células , Inibidores de Proteínas Quinases
15.
Antivir Ther ; 28(5): 13596535231199838, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37669909

RESUMO

BACKGROUND: The COVID-19 pandemic has led to significant loss of life and economic disruption worldwide. Currently, there are limited effective treatments available for this disease. SARS-CoV-2 RNA-dependent RNA polymerase (SARS-CoV-2 RdRp) has been identified as a potential target for drug development against COVID-19. Natural products have been shown to possess antiviral properties, making them a promising source for developing drugs against SARS-CoV-2. OBJECTIVES: The objective of this study is to identify the most effective natural inhibitors of SARS-CoV-2 RdRp among a set of 4924 African natural products using a multi-phase in silico approach. METHODS: The study utilized remdesivir (RTP), the co-crystallized ligand of RdRp, as a starting point to select compounds that have the most similar chemical structures among the examined set of compounds. Molecular fingerprints and structure similarity studies were carried out in the first part of the study. The second part of the study included molecular docking against SARS-CoV-2 RdRp (PDB ID: 7BV2) and Molecular Dynamics (MD) simulations including the calculation of RMSD, RMSF, Rg, SASA, hydrogen bonding, and PLIP. Moreover, the calculations of Molecular mechanics with generalised Born and surface area solvation (MM-GBSA) Lennard-Jones and Columbic electrostatic interaction energies have been conducted. Additionally, in silico ADMET and toxicity studies were performed to examine the drug likeness degrees of the selected compounds. RESULTS: Eight compounds were identified as the most effective natural inhibitors of SARS-CoV-2 RdRp. These compounds are kaempferol 3-galactoside, kaempferol 3-O-ß-D-glucopyranoside, mangiferin methyl ether, luteolin 7-O-ß-D-glucopyranoside, quercetin-O-ß-D-3-glucopyranoside, 1-methoxy-3-indolylmethyl glucosinolate, naringenin, and asphodelin A 4'-O-ß-D-glucopyranoside. CONCLUSION: The results of this study provide valuable information for the development of natural product-based drugs against COVID-19. However, the elected compounds should be further studied in vitro and in vivo to confirm their efficacy in treating COVID-19.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , Simulação de Acoplamento Molecular , Pandemias , RNA Viral , SARS-CoV-2 , Descoberta de Drogas , Computadores
16.
Comput Biol Chem ; 107: 107953, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37673011

RESUMO

A group of theobromine derivatives was designed based on the key pharmacophoric characteristics of VEGFR-2 inhibitors. HepG2 and MCF-7 cancer cell lines were used to test the obtained compounds for their in vitro anti-proliferative activities. Compound 15 (2-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-N-(4-(1-(2-(4-hydroxybenzoyl)hydrazono)ethyl) phenyl)acetamide) was the most potent cytotoxic member against MCF-7 (IC50 = 0.42 µM) and HepG2 (IC50 = 0.22 µM). The effectiveness of VEGFR-2 inhibition was assessed for compound 15, and its IC50 value was calculated to be 0.067 µM. Additional cellular mechanistic investigations showed that compound 15 dramatically increased the population of apoptotic HepG2 cells in both early and late apoptosis. The investigation of apoptotic markers confirmed that compound 15 upregulated the levels of BAX (2.26-fold) and downregulated the levels of Bcl-2 (4.4-fold). The molecular docking investigations, MM-GPSA, PLIP studies, and MD simulations validated the potential of compound 15 to be a VEGFR-2 inhibitor. DFT calculations have been completed to comprehend how the electrical charge is distributed within compound 15 and to predict how it would bond to VEGFR-2. Lastly, ADMET prediction showed that the designed members have drug-like characteristics and minimal levels of toxicity. In conclusion, our in vitro and in silico investigations showed that compound 15 exhibited promising apoptotic anticancer potential through the suppression of VEGFR-2.


Assuntos
Antineoplásicos , Teobromina , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células , Simulação por Computador , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Teobromina/química , Teobromina/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
17.
Comput Biol Chem ; 107: 107958, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37714080

RESUMO

Novel thiazolidine-2,4-dione derivatives, 11a-g, were designed, and synthesized targeting the VEGFR-2 protein. The in vitro studies indicated the abilities of the synthesized derivatives to inhibit VEGFR-2 and prevent the growth of two different cancer cell types, HepG2 and MCF-7. Compound 11 f exhibited the strongest anti-VEGFR-2 activity (IC50 = 0.053 µM). As well, compound 11 f showed impressive anti-proliferative activity against the mentioned cancer cell lines with IC50 values of 0.64 ± 0.01 and 0.53 ± 0.04 µM, respectively. Additionally, compound 11 f arrested the MCF-7 cell cycle at the S phase and increased the overall apoptosis percentage. Furthermore, cell migration assay revealed that compound 11 f has a significant ability to prevent migration and healing potentialities of MCF-7. Moreover, computational studies were used to conduct the molecular investigation of the VEGFR-2-11 f complex. The kinetic and structural features of the complex were examined using molecular dynamics simulations and molecular docking. Besides, Principal component analysis (PCA) was used to explain the dynamics of the VEGFR-2-11 f complex at various spatial scales. The DFT calculations also provided further clarity regarding compound 11 f's structural and electronic features. To evaluate how closely the developed compounds might look like drugs, ADMET and toxicity experiments were computed. To conclude, the presented study demonstrates the potential of compound 11 f as a viable anti-cancer drug, which can serve as a prototype for future structural modifications and further biological investigations.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Fosforilação , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Tiazolidinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
18.
RSC Adv ; 13(40): 27801-27827, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37731835

RESUMO

In this study, novel VEGFR-2-targeting thiazolidine-2,4-dione derivatives with potential anticancer properties were designed and synthesized. The ability of the designed derivatives to inhibit VEGFR-2 and stop the growth of three different cancer cell types (HT-29, A-549, and HCT-116) was examined in vitro. The IC50 value of compound 15, 0.081 µM, demonstrated the best anti-VEGFR-2 potency. Additionally, compound 15 showed remarkable anti-proliferative activities against the tested cancer cell lines, with IC50 values ranging from 13.56 to 17.8 µM. Additional flow cytometric investigations showed that compound 15 increased apoptosis in HT-29 cancer cells (from 3.1% to 31.4%) arresting their growth in the S phase. Furthermore, compound 15's apoptosis induction in the same cell line was confirmed by increasing the levels of BAX (4.8-fold) and decreasing Bcl-2 (2.8-fold). Also, compound 15 noticeably increased caspase-8 and caspase-9 levels by 1.7 and 3.2-fold, respectively. Computational methods were used to perform molecular analysis of the VEGFR-2-15 complex. Molecular dynamics simulations and molecular docking were utilized to analyze the complex's kinetic and structural characteristics. Protein-ligand interaction profiler analysis (PLIP) determined the 3D interactions and binding conformation of the VEGFR-2-15 complex. DFT analyses also provided insights into the 3D geometry, reactivity, and electronic characteristics of compound 15. Computational ADMET and toxicity experiments were conducted to determine the potential of the synthesized compounds for therapeutic development. The study's findings suggest that compound 15 might be an effective anticancer lead compound and could guide future attempts to develop new drugs.

19.
RSC Adv ; 13(33): 23285-23307, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37538515

RESUMO

This study aimed to design anticancer theobromine derivatives inhibiting VEGFR-2. The new compounds were tested in vitro to evaluate their effectiveness against MCF-7 and HepG2 cancer cell lines. Among these compounds, 15a showed the highest cytotoxicity against HepG2, with an IC50 value of 0.76 µM, and significant anti-proliferative effects on MCF-7, with an IC50 value of 1.08 µM. Notably, the selectivity index of 15a against the two cancer cells was 98.97 and 69.64, respectively. Moreover, 15a demonstrated potent VEGFR-2 inhibitory activity (IC50 = 0.239 µM). Further investigations revealed that 15a induced apoptosis in HepG2 cells, significantly increasing early-stage and late-stage apoptosis percentages from 3.06% and 0.71% to 29.49% and 9.63%, respectively. It also upregulated caspase-3 and caspase-9 levels by 3.45-fold and 2.37-fold, respectively compared to control HepG2 cells. Additionally, 15a inhibited the migration and wound healing ability of HepG2 cells. Molecular docking confirmed the binding affinities of the semi-synthesized compounds to VEGFR-2, consistent with in vitro results. Several computational analyses (DFT, MD simulations, MM-GBSA, PLIP, and essential dynamics) supported the stability of the 15a-VEGFR-2 complex. Overall, the biological and computational findings suggest that compound 15a could be a promising lead compound for the development of a novel apoptotic anticancer agent.

20.
RSC Adv ; 13(33): 23365-23385, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37545598

RESUMO

In this work, new thieno[2,3-d]pyrimidine-derived compounds possessing potential anticancer activities were designed and synthesized to target VEGFR-2. The thieno[2,3-d]pyrimidine derivatives were tested in vitro for their abilities to inhibit VEGFR-2 and to prevent cancer cell growth in two types of cancer cells, MCF-7 and HepG2. Compound 18 exhibited the strongest anti-VEGFR-2 potential with an IC50 value of 0.084 µM. Additionally, it displayed excellent proliferative effects against MCF-7 and HepG2 cancer cell lines, with IC50 values of 10.17 µM and 24.47 µM, respectively. Further studies revealed that compound 18 induced cell cycle arrest in G2/M phase and promoted apoptosis in MCF-7 cancer cells. Apoptosis was stimulated by compound 18 by increasing BAX (3.6-fold) and decreasing Bcl-2 (3.1-fold). Additionally, compound 18 significantly raised the levels of caspase-8 (2.6-fold) and caspase-9 (5.4-fold). Computational techniques were also used to investigate the VEGFR-2-18 complex at a molecular level. Molecular docking and molecular dynamics simulations were performed to assess the structural and energetic features of the complex. The protein-ligand interaction profiler analysis identified the 3D interactions and binding conformation of the VEGFR-2-18 complex. Essential dynamics (ED) study utilizing principal component analysis (PCA) described the protein dynamics of the VEGFR-2-18 complex at various spatial scales. Bi-dimensional projection analysis confirmed the proper binding of the VEGFR-2-18 complex. In addition, the DFT studies provided insights into the structural and electronic properties of compound 18. Finally, computational ADMET and toxicity studies were conducted to evaluate the potential of the thieno[2,3-d]pyrimidine derivatives for drug development. The results of the study suggested that compound 18 could be a promising anticancer agent that may provide effective treatment options for cancer patients. Furthermore, the computational techniques used in this research provided valuable insights into the molecular interactions of the VEGFR-2-18 complex, which may guide future drug design efforts. Overall, this study highlights the potential of thieno[2,3-d]pyrimidine derivatives as a new class of anticancer agents and provides a foundation for further research in this area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA