Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 124: 155272, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181530

RESUMO

BACKGROUND: Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aß) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE: This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS: Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS: Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS: Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aß load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Curcumina , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Resveratrol/farmacologia , Curcumina/farmacologia , Quercetina/farmacologia , Apigenina/farmacologia , Genisteína/farmacologia , Peptídeos beta-Amiloides/metabolismo , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , Transdução de Sinais , Fatores de Crescimento Neural/metabolismo , Compostos Fitoquímicos/uso terapêutico , Fármacos Neuroprotetores/química
2.
J Infect Public Health ; 16 Suppl 1: 61-68, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37880004

RESUMO

BACKGROUND: Multi Drugs Resistance (MDR) is among the most worrisome healthcare issues resulting from inappropriate and indiscriminate utilization of antimicrobial agents which has compromised the efficacy and reliability of antimicrobial agents (AMAs). This has not only put a huge burden on the health care system but also is a major cause of morbidity and mortality. This project was designed to evaluate the prevalence of various microbial strains among patients admitted to various teaching hospitals and to assess their susceptibility and resistance towards clinically approved antibiotics. METHODS: The study was conducted during August 2021-February 2022 to determine the prevalence of common resistant strains of bacteria and to analyze their susceptibility pattern to the commonly prescribed antibiotics using standard procedures. One hundred and thirty biological samples including urine, blood, cerebrospinal fluid (CSF), wound swabs, pus and sputum were collected from the site of infection from the patients admitted at different wards of North West General Hospital (NWGH), Peshawar, Pakistan, Khyber Teaching Hospital (KTH), Peshawar Pakistan, and Hayat Abad Medical Complex (HMC) Peshawar Pakistan. Samples were collected and cultured following standard hospital procedures. The cultured samples were subjected to identification procedures including Gram staining, morphological characterization of bacterial colonies and biochemical assessments. The identified bacteria were tested for their susceptibility using Kirby-Bauer disc diffusion method. The diameter of Inhibitory Zones (DIZ) was analyzed following Clinical and Laboratory Standards Institute (CLSI) criteria. Minimum Inhibitory Concentrations (MICs) were evaluated using agar dilution method. Antimicrobials sensitivity were presented as antibiogram following CLSI M39 standard. RESULTS: A total of one hundred and thirty biological samples were collected, out of which one hundred and nine samples were positive for bacterial growth and were further processed for detailed analysis. The frequency and type of bacteria isolated from various cultures indicated that Gram negative bacteria (n = 92/109) were more dominant than Gram-positive (n = 17/109) pathogens. The most prevalent bacteria isolated was Escherichia coli (29.35 %), followed by Staphylococcus aureus (15.59 %), and Klebsiella spp, (12.84 %). In addition, other pathogens including, Enterobacter spp, Citrobacter spp, and Acinetobacter spp. showed a prevalence of 9.175 %, 8.25 %, and 5.50 % respectively. As indicated in the antbiogram, several organisms exhibited considerble decline in the sensitivies towards various antibiotics. A high percentage of resistance was observed against some antibiotics including trimethoprim, co-trimoxazole, amoxicillin/clavulanate, ciprofloxacin, piperacillin/tazobactam, cefotaxime and ceftazidime. CONCLUSION: The prevalence of resistant strains of pathogens is increasing day by day, while the antibiotics commonly prescribed against them are losing their efficacy, which is pushing the world to the era of pre-antibiotics. Unfortunately, the discovery of novel antibiotics is limited and researchers speculate that the is pushing towards pre-antibiotics era. Subsequently, efforts must be directed towards ensuring rational antibiotics use to prevent emergence of MDR pathogens. Our findings indicated that Gram negative bacteria including Escherichia coli was most prevalent. Other bacterial strains including S. aureus, Klebsiella spp, Enterobacter spp, Citrobacter spp, and Acinetobacter spp. were found among the causative agents. Unfortunately, considerable decline in the sensitivities of various bacterial isolated were observed towards the tested antibiotics. Previous studies reported the high prevalence of E. coli and S. aureus in clinical samples of Pakistani hospitals including hospitals in Peshawar and thus our findings are in agreement with the previous reports. Pharmacists being experts can play their role by promoting the optimal use of antimicrobial agents and educating healthcare professionals, patients and the public.


Assuntos
Anti-Infecciosos , Staphylococcus aureus , Humanos , Farmacorresistência Bacteriana , Prevalência , Escherichia coli , Saúde Pública , Reprodutibilidade dos Testes , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Hospitais de Ensino , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Estudos Epidemiológicos
3.
Steroids ; 193: 109196, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764565

RESUMO

Leishmaniasis is a vector-borne infection caused by protozoan parasites from the genus leishmania and is among the most neglected tropical diseases. It is highly prevalent disease, affecting about 350 million population worldwide. Only limited number of anti-leishmanial agents are approved for clinical use till now and they are associated with side effects and have limited efficacy. Subsequently, natural products based discovery of more safe and effective drugs against leishmania is under scientific consideration. Various studies reported the efficacy of natural products against intracellular and extracellular forms of leishmania species. This work is aimed to evaluate current literature focused on the anti-leihmanial efficacy of steroidal moieties from natural products and their mechanism of action. Compounds including steroidal saponins, steroidal alkaloids and phytosterols were found to exhibit considerable anti-leishmanial efficacy. For instance, steroidal saponin, (25R)-spirost-5-en-3b-ol,3-O-α-rhamnopyranosyl-(1 â†’ 4)-α-rhamnopyranosyl-(1 â†’ 4)-[a-rhamnopyranosyl-(1 â†’ 2)]-glucopyranoside isolated from A. paradoxum has completely eradicated Leishmania major promastigotes at 50 µg mL-1 dose. Spirostanic saponins isolated from Solanum paniculatum L. were effective against Leishmania amazonensis promastigotes. Turgidosterones isolated from Panicum turgidum exhibited high leishmanicidal potentials against Leishmania donovani promastigotes with IC50 of 4.95-8.03 µg mL-1 and even better activity against amastigotes exhibiting an IC50 of 4.50-9.29 µg mL-1. Likewise, racemoside-A from Asparagus racemosus was found effective against an antimonial sensitive (AG83) and antimonial resistant (GE1F8R) strains of the L. donovani. Moreover, steroidal alkaloids including hookerianamide-1, hookerianamide-H, hookerianamide-J, hookerianamide-K, dehydrosarsalignone, vagenine-A, sarcovagine-C, holaphylline, saracodine, holamine, 15-α hydroxyholamine, holacurtin, N-desmethyl holacurtine and elasticine has exhibited time and dose-dependent efficacy against various strains of leishmania. ß-sitosterol was found active against multiple strains of leishmania. These compounds mainly exhibit their therapeutic efficacy via liberation of ROS, mitochondrial depolarization, morphological and ultra-structural changes, accumulation of lipid droplets, depletion of non-protein thiols and triggering apoptotic pathways. In conclusion, leishmaniasis is a major health problem in many countries. Plants-derived steroids moieties have reveled efficacy against leishmaniasis and is a source of lead compounds. Further detailed molecular studies are warranted for the discovery of more effective and safe anti-leishmanial drugs.


Assuntos
Alcaloides , Antiprotozoários , Produtos Biológicos , Leishmaniose , Saponinas , Humanos , Antiprotozoários/farmacologia , Antiprotozoários/química , Produtos Biológicos/farmacologia , Leishmaniose/tratamento farmacológico , Prevalência , Saponinas/uso terapêutico , Esteroides/farmacologia , Esteroides/uso terapêutico
4.
Molecules ; 27(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296397

RESUMO

Saponins are triterpenoid or steroidal glycosides and are an important group of naturally occurring compounds of plant origin. They exhibit diverse pharmacological potentials including radical scavenging, as well as neuroprotective, anti-diabetic and anti-inflammatory activities, owing to their diverse chemical scaffolds. Saponins consist of an aglycone part (non-sugar) and a glycone part (sugar) and have at least one glycosidic (C-O sugar bond) linkage present between the glycone and aglycone mostly at C-3. On the basis of the aglycone part, saponins are classified into triterpenoid glycosides, steroid glycosides and alkaloid glycosides. Saponins exhibit neuroprotective activities against various disorders of the central nervous system (CNS) including stroke, Alzheimer's disease (AD), Huntington's disease (HD) and Parkinson's disease (PD). They mediate their therapeutic effects by modulation of various pathological targets. This study highlights various neuroprotective mechanisms of saponins including free radical scavenging, modulation of neuroprotective signaling pathways, activation of neurotrophic factors, modulation of neurotransmitters, inhibition of BACE1 enzyme and tau hyper-phosphorylation. The study concludes that saponins have considerable efficacy against various pathological targets of neurological disorders, especially AD, and might be an important source of leads against neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Saponinas , Triterpenos , Humanos , Saponinas/química , Doença de Alzheimer/tratamento farmacológico , Saúde Pública , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Doenças Neurodegenerativas/tratamento farmacológico , Triterpenos/química , Glicosídeos/uso terapêutico , Fatores de Crescimento Neural , Neurotransmissores/uso terapêutico , Radicais Livres , Esteroides/uso terapêutico
5.
Artigo em Inglês | MEDLINE | ID: mdl-35463090

RESUMO

Introduction: Natural products are among the most useful sources for the discovery of new drugs against various diseases. Keeping in view the ethnobotanical relevance ethnopharmacological significance of Polygonaceae family in diabetes, the current study was designed to isolate pure compounds from Persicaria hydropiper L. leaves and evaluate their in vitro and in silico antidiabetic potentials. Methods: Six compounds were isolated from the chloroform-ethyl acetate fractions using gravity column chromatography and were subjected to structure elucidation process. Structures were confirmed using 1H-NMR, 13C-NMR, and mass spectrometry techniques. Isolated phytochemicals were subjected to in vitro antidiabetic studies, including α-glucosidase, α-amylase inhibition, and DPPH, and ABTS antioxidant studies. Furthermore, the in silico binding mode of these compounds in the target enzymes was elucidated via MOE-Dock software. Results: The isolated compounds revealed concentration-dependent inhibitions against α-glucosidase enzyme. Ph-1 and Ph-2 were most potent with 81.84 and 78.79% enzyme inhibitions at 1000 µg·mL-1, respectively. Ph-1 and Ph-2 exhibited IC50s of 85 and 170 µg·mL-1 correspondingly. Likewise, test compounds showed considerable α-amylase inhibitions with Ph-1 and Ph-2 being the most potent. Tested compounds exhibited considerable antioxidant potentials in both DPPH and ABTS assays. Molecular simulation studies also revealed top-ranked confirmations for the majority of the compounds in the target enzymes. Highest observed potent compound was Ph-1 with docking score of -12.4286 and formed eight hydrogen bonds and three H-pi linkages with the Asp 68, Phe 157, Phe 177, Asn 241, Glu 276, His 279, Phe 300, Glu 304, Ser 308, Pro 309, Phe 310, Asp 349, and Arg 439 residues of α-glucosidase binding packets. Asp 68, Glu 276, Asp 349, and Arg 439 formed polar bonds with the 3-ethyl-2-methylpentane moiety of the ligand. Conclusions: The isolated compounds exhibited considerable antioxidant and inhibitory potentials against vital enzymes implicated in T2DM. The docking scores of the compounds revealed that they exhibit affinity for binding with target ligands. The enzyme inhibition and antioxidant potential of the compounds might contribute to the hypoglycemic effects of the plant and need further studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA