RESUMO
The hydroethanol (70%) extracts of three Lobelia species (L. nicotianifolia, L. sessilifolia, and L. chinensis) were analyzed using LC-ESI-MS/MS. Forty-five metabolites were identified, including different flavonoids, coumarin, polyacetylenes, and alkaloids, which were the most abundant class. By applying Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) based on LC-ESI-MS/MS analysis, the three species were completely segregated from each other. In addition, the three Lobelia extracts were tested for their antioxidant activities using a DPPH assay and as antidiabetic agents against α-glycosidase and α-amylase enzymes. L. chinensis extract demonstrated significant antioxidant activity with an IC50 value of 1.111 mg/mL, while L. nicotianifolia showed mild suppressing activity on the α-glycosidase activity with an IC50 value of 270.8 µg/mL. A molecular simulation study was performed on the main compounds to predict their potential antidiabetic activity and pharmacokinetic properties. The molecular docking results confirmed the α-glycosidase inhibitory activity of the tested compounds, as seen in their binding mode to the key amino acid residues at the binding site compared to that of the standard drug acarbose. Furthermore, the predictive ADMET results revealed good pharmacokinetic properties of almost all of the tested compounds. The biological evaluation results demonstrated the promising activity of the tested compounds, aligned with the in silico results.
RESUMO
Recently, there has been a surge towards searching for primitive treatment strategies to discover novel therapeutic approaches against multi-drug-resistant pathogens. Endophytes are considered unexplored yet perpetual sources of several secondary metabolites with therapeutic significance. This study aims to isolate and identify the endophytic fungi from Annona squamosa L. fruit peels using morphological, microscopical, and transcribed spacer (ITS-rDNA) sequence analysis; extract the fungus's secondary metabolites by ethyl acetate; investigate the chemical profile using UPLC/MS; and evaluate the potential antibacterial, antibiofilm, and antiviral activities. An endophytic fungus was isolated and identified as Aspergillus flavus L. from the fruit peels. The UPLC/MS revealed seven compounds with various chemical classes. The antimicrobial activity of the fungal ethyl acetate extract (FEA) was investigated against different Gram-positive and Gram-negative standard strains, in addition to resistant clinical isolates using the agar diffusion method. The CPE-inhibition assay was used to identify the potential antiviral activity of the crude fungal extract against low pathogenic human coronavirus (HCoV 229E). Selective Gram-positive antibacterial and antibiofilm activities were evident, demonstrating pronounced efficacy against both methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). However, the extract exhibited very weak activity against Gram-negative bacterial strains. The ethyl acetate extract of Aspergillus flavus L exhibited an interesting antiviral activity with a half maximal inhibitory concentration (IC50) value of 27.2 µg/mL against HCoV 229E. Furthermore, in silico virtual molecular docking-coupled dynamics simulation highlighted the promising affinity of the identified metabolite, orienting towards three MRSA biotargets and HCoV 229E main protease as compared to reported reference inhibitors/substrates. Finally, ADME analysis was conducted to evaluate the potential oral bioavailability of the identified metabolites.
RESUMO
Obesity and its comorbidities represent a major health problem worldwide. Treatment by reducing food intake and physical activity interventions has limited success especially with elderly people with chronic diseases. Nutraceuticals are naturally originated and successfully used for their physiological and nutritional benefit in health care. They might be alternative means to help lose weight and reduce obesity-associated metabolic disorders with the improvement of health, delay the aging process, prevention of chronic diseases, increase of life expectancy, or support to the structure or function of the body. The current study enumerates the inherent role of nutraceuticals in the management of obesity and its related comorbidities. The study is supported with the molecular docking studies discussing the mechanism of action. An attempt to optimize the role of nutraceuticals is made in this article in addition to widen the scope of its use in this chronic worldwide disease.
Assuntos
Suplementos Nutricionais , Obesidade , Humanos , Idoso , Simulação de Acoplamento Molecular , Estudos Prospectivos , Obesidade/terapia , Doença CrônicaRESUMO
BACKGROUND: Endophytic Aspergillus species produce countless valuable bioactive secondary metabolites. In the current study, Aspergillus flavus an endophyte from the soft coral Sarcophyton ehrenbergi was chemically explored and the extracted phytoconstituents were subsequently evaluated for antimicrobial activity. This is accomplished by employing nuclear magnetic resonance (NMR) spectroscopy and computational techniques. Additionally, An in vitro anticancer analysis of A. flavus total extract against breast cancer cells (MCF-7) was investigated. RESULT: Six compounds were separated from the crude alcohol extract of the endophytic Aspergillus flavus out of which anhydro-mevalonolactone was reported for the first time. The anti-fungal and anti-Helicobacter pylori properties of two distinct compounds (Scopularides A and B) were assessed. Additionally, computational research was done to identify the binding mechanisms for all compounds. Both the compounds were found to be active against H. pylori with minimum inhibitory concentration (MIC) values ranging from 7.81 to 15.63 µg/ mL as compared with clarithromycin 1.95 µg/ mL. Scopularides A was potent against both Candida albicans and Aspergillus niger with MIC values ranging from 3.9 to 31.25 µg/ mL, while scopularides B only inhibits Candida albicans with MIC value of 15.63 µg/ mL and weak inhibitory activity against A. niger (MIC = 125 µg/ mL). Furthermore, cytotoxic activity showed a significant effect (IC50: 30.46 mg/mL) against MCF-7 cells. CONCLUSION: Our findings report that cytotoxic activity and molecular docking support the antimicrobial activity of Aspergillus flavus, which could be a promising alternative source as a potential antimicrobial agent.
RESUMO
Culex pipiens mosquitoes are vectors to many viruses and can transmit diseases such as filariasis and avian malaria. The present study evaluated the larvicidal activity of marine-derived endophytic fungi Aspergillus nomius and Aspergillus flavus from the soft coral Sarcophyton ehrenbergi along with two known cyclodepsipeptide compounds, scopularide A (1) and B (2), isolated from A. flavus extract, against third-instar larvae of C. pipiens, using distilled water as a negative control and toosenedanin as a positive control. The structures of the isolated compounds were confirmed by various spectroscopic analyses. The lethal concentrations (LC50 and LC90) were calculated by probit analysis. Scopularide A was the most potent after 96 h treatment, with LC50 and LC90 values of 58.96 and 994.31 ppm, respectively, and with 82.66% mortality at a concentration of 300 ppm. To unravel the biochemical mechanism of the tested extracts and compounds, their effects against protease, chitinase, phenoloxidases and lipase enzymes from the whole-body tissue of C. pipiens were evaluated after 72 h treatment at LC50 dose. Superior activity was observed for A. flavus extract against all tested enzymes. A molecular docking study was conducted for scopularide A and B on the four tested enzymes, to further verify the observed activity. Results revealed good binding affinities for both compounds as compared to the docked ligands, mainly via a number of hydrogen bonds. This was the first study to report the isolation of endophytic fungi A. flavus and A. nomius from the marine soft coral S. ehrenbergi. The endophytic fungal extract of A. flavus was found to be a promising source for a natural larvicidal agent against C. pipiens populations.
Assuntos
Antozoários , Depsipeptídeos , Inseticidas , Animais , Depsipeptídeos/farmacologia , Fungos , Simulação de Acoplamento Molecular , Mosquitos Vetores , Extratos Vegetais/químicaRESUMO
One of the most widely distributed soft coral species, found especially in shallow waters of the Indo-Pacific region, Red Sea, Mediterranean Sea, and also the Arctic, is genus Sacrophyton. The total number of species belonging to it was estimated to be 40. Sarcophyton species are considered to be a reservoir of bioactive natural metabolites. Secondary metabolites isolated from members belonging to this genus show great chemical diversity. They are rich in terpenoids, in particular, cembranoids diterpenes, tetratepenoids, triterpenoids, and ceramide, in addition to steroids, sesquiterpenes, and fatty acids. They showed a broad range of potent biological activities, such as antitumor, neuroprotective, antimicrobial, antiviral, antidiabetic, antifouling, and anti-inflammatory activity. This review presents all isolated secondary metabolites from species of genera Sacrophyton, as well as their reported biological activities covering a period of about two decades (1998-2019). It deals with 481 metabolites, including 323 diterpenes, 39 biscembranoids, 11 sesquiterpenes, 53 polyoxygenated sterols, and 55 miscellaneous and their pharmacological activities.