Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Magn Reson Med ; 91(3): 1099-1114, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37997011

RESUMO

PURPOSE: To evaluate the influence of skeletal maturation on sodium (23 Na) MRI relaxation parameters and the accuracy of tissue sodium concentration (TSC) quantification in human knee cartilage. METHODS: Twelve pediatric knee specimens were imaged with whole-body 10.5 T MRI using a density-adapted 3D radial projection sequence to evaluate 23 Na parameters: B1 + , T1 , biexponential T 2 * $$ {\mathrm{T}}_2^{\ast } $$ , and TSC. Water, collagen, and sulfated glycosaminoglycan (sGAG) content were calculated from osteochondral biopsies. The TSC was corrected for B1 + , relaxation, and water content. The literature-based TSC (TSCLB ) used previously published values for corrections, whereas the specimen-specific TSC (TSCSP ) used measurements from individual specimens. 23 Na parameters were evaluated in eight cartilage compartments segmented on proton images. Associations between 23 Na parameters, TSCLB - TSCSP difference, biochemical content, and age were determined. RESULTS: From birth to 12 years, cartilage water content decreased by 18%; collagen increased by 59%; and sGAG decreased by 36% (all R2 ≥ 0.557). The short T 2 * $$ {\mathrm{T}}_2^{\ast } $$ ( T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ ) decreased by 72%, and the signal fraction relaxing with T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ ( fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ ) increased by 55% during the first 5 years but remained relatively stable after that. TSCSP was significantly correlated with sGAG content from biopsies (R2 = 0.739). Depending on age, TSCLB showed higher or lower values than TSCSP . The TSCLB - TSCSP difference was significantly correlated with T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.850), fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.651), and water content (R2 = 0.738). CONCLUSION: TSC and relaxation parameters measured with 23 Na MRI provide noninvasive information about changes in sGAG content and collagen matrix during cartilage maturation. Cartilage TSC quantification assuming fixed relaxation may be feasible in children older than 5 years.


Assuntos
Cartilagem Articular , Cartilagem , Humanos , Criança , Pré-Escolar , Imageamento por Ressonância Magnética/métodos , Sódio , Colágeno , Água , Cartilagem Articular/diagnóstico por imagem
2.
Semin Musculoskelet Radiol ; 27(6): 618-631, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935208

RESUMO

Chronic knee pain is a common condition. Causes of knee pain include trauma, inflammation, and degeneration, but in many patients the pathophysiology remains unknown. Recent developments in advanced magnetic resonance imaging (MRI) techniques and molecular imaging facilitate more in-depth research focused on the pathophysiology of chronic musculoskeletal pain and more specifically inflammation. The forthcoming new insights can help develop better targeted treatment, and some imaging techniques may even serve as imaging biomarkers for predicting and assessing treatment response in the future. This review highlights the latest developments in perfusion MRI, diffusion MRI, and molecular imaging with positron emission tomography/MRI and their application in the painful knee. The primary focus is synovial inflammation, also known as synovitis. Bone perfusion and bone metabolism are also addressed.


Assuntos
Dor Musculoesquelética , Sinovite , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologia , Imageamento por Ressonância Magnética/métodos , Sinovite/etiologia , Sinovite/patologia , Inflamação/patologia , Imagem Molecular/efeitos adversos
3.
Invest Radiol ; 58(6): 405-412, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728041

RESUMO

BACKGROUND: Detection of rotator cuff tears, a common cause of shoulder disability, can be time-consuming and subject to reader variability. Deep learning (DL) has the potential to increase radiologist accuracy and consistency. PURPOSE: The aim of this study was to develop a prototype DL model for detection and classification of rotator cuff tears on shoulder magnetic resonance imaging into no tear, partial-thickness tear, or full-thickness tear. MATERIALS AND METHODS: This Health Insurance Portability and Accountability Act-compliant, institutional review board-approved study included a total of 11,925 noncontrast shoulder magnetic resonance imaging scans from 2 institutions, with 11,405 for development and 520 dedicated for final testing. A DL ensemble algorithm was developed that used 4 series as input from each examination: fluid-sensitive sequences in 3 planes and a sagittal oblique T1-weighted sequence. Radiology reports served as ground truth for training with categories of no tear, partial tear, or full-thickness tear. A multireader study was conducted for the test set ground truth, which was determined by the majority vote of 3 readers per case. The ensemble comprised 4 parallel 3D ResNet50 convolutional neural network architectures trained via transfer learning and then adapted to the targeted domain. The final tear-type prediction was determined as the class with the highest probability, after averaging the class probabilities of the 4 individual models. RESULTS: The AUC overall for supraspinatus, infraspinatus, and subscapularis tendon tears was 0.93, 0.89, and 0.90, respectively. The model performed best for full-thickness supraspinatus, infraspinatus, and subscapularis tears with AUCs of 0.98, 0.99, and 0.95, respectively. Multisequence input demonstrated higher AUCs than single-sequence input for infraspinatus and subscapularis tendon tears, whereas coronal oblique fluid-sensitive and multisequence input showed similar AUCs for supraspinatus tendon tears. Model accuracy for tear types and overall accuracy were similar to that of the clinical readers. CONCLUSIONS: Deep learning diagnosis of rotator cuff tears is feasible with excellent diagnostic performance, particularly for full-thickness tears, with model accuracy similar to subspecialty-trained musculoskeletal radiologists.


Assuntos
Aprendizado Profundo , Lesões do Manguito Rotador , Humanos , Lesões do Manguito Rotador/diagnóstico por imagem , Lesões do Manguito Rotador/patologia , Ombro , Manguito Rotador/patologia , Imageamento por Ressonância Magnética/métodos
4.
J Orthop Res ; 41(7): 1449-1463, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36484124

RESUMO

Current clinical MRI of patients with juvenile osteochondritis dissecans (JOCD) is limited by the low reproducibility of lesion instability evaluation and inability to predict which lesions will heal after nonoperative treatment and which will later require surgery. The aim of this study is to verify the ability of apparent diffusion coefficient (ADC) to detect differences in lesion microstructure between different JOCD stages, treatment groups, and healthy, unaffected contralateral knees. Pediatric patients with JOCD received quantitative diffusion MRI between January 2016 and September 2020 in this prospective research study. A disease stage (I-IV) and stability of each JOCD lesion was evaluated. ADCs were calculated in progeny lesion, interface, parent bone, cartilage overlying lesion, control bone, and control cartilage regions. ADC differences were evaluated using linear mixed models with Bonferroni correction. Evaluated were 30 patients (mean age, 13 years; 21 males), with 40 JOCD-affected and 12 healthy knees. Nine patients received surgical treatment after MRI. Negative Spearman rank correlations were found between ADCs and JOCD stage in the progeny lesion (ρ = -0.572; p < 0.001), interface (ρ = -0.324; p = 0.041), and parent bone (ρ = -0.610; p < 0.001), demonstrating the sensitivity of ADC to microstructural differences in lesions at different JOCD stages. We observed a significant increase in the interface ADCs (p = 0.007) between operative (mean [95% CI] = 1.79 [1.56-2.01] × 10-3 mm2 /s) and nonoperative group (1.27 [0.98-1.57] × 10-3 mm2 /s). Quantitative diffusion MRI detects microstructural differences in lesions at different stages of JOCD progression towards healing and reveals differences between patients assigned for operative versus nonoperative treatment.


Assuntos
Cartilagem Articular , Osteocondrite Dissecante , Masculino , Humanos , Criança , Adolescente , Osteocondrite Dissecante/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Reprodutibilidade dos Testes , Estudos Prospectivos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologia , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética
5.
J Orthop Res ; 41(3): 663-673, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35716161

RESUMO

Juvenile osteochondritis dissecans (JOCD) is a pediatric orthopedic disorder that involves the articular-epiphyseal cartilage complex and underlying bone. Clinical disease is often characterized by the presence of radiographically apparent osteochondral flaps and fragments. The existence of early JOCD lesions (osteochondrosis latens [OCL] and osteochondrosis manifesta [OCM]) that precede the development of osteochondral flaps and fragments is also well recognized. However, identification of naturally occurring OCL lesions (confined to cartilage) using noninvasive imaging techniques has not yet been accomplished. We hypothesized that 10.5 T magnetic resonance imaging (MRI) can identify naturally occurring OCL lesions at predilection sites in intact joints of juvenile pigs. Unilateral elbows and knees (stifles) were harvested from three pigs aged 4, 8, and 12 weeks, and scanned in a 10.5 T MRI to obtain morphological 3D DESS images, and quantitative T2 and T1ρ relaxation time maps. Areas with increased T2 and T1ρ relaxation times in the articular-epiphyseal cartilage complex were identified in 1/3 distal femora and 3/3 distal humeri and were considered suspicious for OCL or OCM lesions. Histological assessment confirmed the presence of OCL or OCM lesions at each of these sites and failed to identify additional lesions. Histological findings included necrotic vascular profiles associated with areas of chondronecrosis either confined to the epiphyseal cartilage (OCL, 4- and 8-week-old specimens) or resulting in a delay in endochondral ossification (OCM, 12-week-old specimen). Future studies with clinical MR systems (≤7 T) are needed to determine whether these MRI methods are suitable for the in vivo diagnosis of early JOCD lesions in humans.


Assuntos
Osteocondrite Dissecante , Osteocondrose , Humanos , Criança , Suínos , Animais , Osteocondrose/patologia , Necrose , Imageamento por Ressonância Magnética , Imageamento Tridimensional
6.
J Orthop Res ; 41(1): 150-160, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35430743

RESUMO

Juvenile osteochondritis dissecans (JOCD) is an orthopedic joint disorder of children and adolescents that can lead to premature osteoarthritis. Thirteen patients (mean age: 12.3 years, 4 females), 15 JOCD-affected and five contralateral healthy knees, that had a baseline and a follow-up magnetic resonance imaging (MRI) (mean interval of 8.9 months) and were treated nonoperatively during this interval were included. Retrospectively, patients were assigned to operative or nonoperative groups based on their electronic medical records. Volumetric mean T2 * values were calculated within regions of interest (progeny lesion, interface, parent bone) and region matched control bone in healthy contralateral knees and condyles. The normalized percentage difference of T2 * between baseline and follow up MRI in nonoperative patients significantly increased in progeny lesion (-47.8%, p < 0.001), parent bone (-13.9%, p < 0.001), and interface (-32.3%, p = 0.011), whereas the differences in operative patients were nonsignificant and below 11%. In nonoperative patients, the progeny lesion (p < 0.001) and interface T2 * values (p = 0.012) were significantly higher than control bone T2 * at baseline, but not at follow-up (p = 0.219, p = 1.000, respectively). In operative patients, the progeny lesion and interface T2 * values remained significantly elevated compared to the control bone both at baseline (p < 0.001, p < 0.001) and follow-up (p < 0.001, p < 0.001), respectively. Clinical Significance: Longitudinal T2 * mapping differentiated nonhealing from healing JOCD lesions following initial nonoperative treatment, which may assist in prognosis and improve the ability of surgeons to make recommendations regarding operative versus nonoperative treatment.


Assuntos
Imageamento por Ressonância Magnética , Criança , Humanos , Adolescente , Projetos Piloto , Estudos Retrospectivos
7.
J Orthop Res ; 40(7): 1632-1644, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34637164

RESUMO

Juvenile osteochondritis dissecans (JOCD) lesions contain cartilaginous, fibrous and osseous tissues which are difficult to distinguish with clinical, morphological magnetic resonance imaging (MRI). Quantitative T2 * mapping has earlier been used to evaluate microstructure and composition of all aforementioned tissues as well as bone mineral density. However, the ability of T2 * mapping to detect changes in tissue composition between different JOCD lesion regions, different disease stages, and between stable and unstable lesions has not been demonstrated. This study analyzed morphological and T2 * MRI data from 25 patients (median age, 12.1 years) with 34 JOCD-affected and 13 healthy knees. Each lesion was assigned a stage reflecting the natural history of JOCD, with stages I and IV representing early and healed lesion, respectively. T2 * values were evaluated within the progeny lesion, interface and parent bone of each lesion and in the control bone region. T2 * was negatively correlated with JOCD stage in progeny lesion (ρ = -0.871; p < 0.001) and interface regions (ρ = -0.649; p < 0.001). Stage IV progeny showed significantly lower T2 * than control bone (p = 0.028). T2 * was significantly lower in parent bone than in control bone of patients with stable lesions (p = 0.009), but not in patients with unstable lesions (p = 0.14). Clinical significance: T2 * mapping enables differentiation between different stages of JOCD and quantitative measurement of the ossification degree in progeny lesion and interface. The observed T2 * decrease in healed and stable lesions may indicate increased bone density as a result of the active repair process. T2 * mapping provides quantitative information about JOCD lesion composition.


Assuntos
Osteocondrite Dissecante , Criança , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologia , Imageamento por Ressonância Magnética/métodos , Osteocondrite Dissecante/diagnóstico por imagem , Pais , Estudos Retrospectivos
8.
J Orthop Res ; 40(2): 484-494, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33788301

RESUMO

This study investigated the sensitivity of T1ρ and T2 relaxation time mapping to detect acute ischemic injury to the secondary ossification center (SOC) and epiphyseal cartilage of the femoral head in a piglet model of Legg-Calvé-Perthes disease. Six piglets underwent surgery to induce global right femoral head ischemia and were euthanized 48 h later. Fresh operated and contralateral-control femoral heads were imaged ex vivo with T1, T2, and T1ρ mapping using a 9.4T magnetic resonance imaging scanner. The specimens were imaged a second time after a freeze/thaw cycle and then processed for histology. T1, T2, and T1ρ measurements in the SOC, epiphyseal cartilage, articular cartilage, and metaphysis were compared between operated and control femoral heads using paired t tests. The effects of freeze/thaw, T1ρ spin-lock frequency, and fat saturation were also investigated. Five piglets with histologically confirmed ischemic injury were quantitatively analyzed. T1ρ was increased in the SOC (101 ± 15 vs. 73 ± 16 ms; p = 0.0026) and epiphyseal cartilage (84.9 ± 9.2 vs. 74.3 ± 3.6 ms; p = 0.031) of the operated versus control femoral heads. T2 was also increased in the SOC (28.7 ± 2.0 vs. 22.7 ± 1.7; p = 0.0037) and epiphyseal cartilage (57.4 ± 4.7 vs. 49.0 ± 2.7; p = 0.0041). No changes in T1 were detected. The sensitivities of T1ρ and T2 mapping in detecting ischemic injury were maintained after a freeze/thaw cycle, and T1ρ sensitivity was maintained after varying spin-lock frequency and applying fat saturation. In conclusion, T1ρ and T2 mapping are sensitive in detecting ischemic injury to the SOC and epiphyseal cartilage of the femoral head as early as 48 h after ischemia induction.


Assuntos
Cartilagem Articular , Doença de Legg-Calve-Perthes , Animais , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/patologia , Lâmina de Crescimento/patologia , Isquemia/diagnóstico por imagem , Isquemia/etiologia , Doença de Legg-Calve-Perthes/diagnóstico por imagem , Doença de Legg-Calve-Perthes/patologia , Imageamento por Ressonância Magnética/métodos , Suínos
9.
Am J Sports Med ; 50(1): 118-127, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34818065

RESUMO

BACKGROUND: Osteochondritis dissecans (OCD) occurs most commonly in the knees of young individuals. This condition is known to cause pain and discomfort in the knee and can lead to disability and early knee osteoarthritis. The cause is not well understood, and treatment plans are not well delineated. The Research in Osteochondritis Dissecans of the Knee (ROCK) group established a multicenter, prospective cohort to better understand this disease. PURPOSE: To provide a baseline report of the ROCK multicenter prospective cohort and present a descriptive analysis of baseline data for patient characteristics, lesion characteristics, and clinical findings of the first 1000 cases enrolled into the prospective cohort. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Patients were recruited from centers throughout the United States. Baseline data were obtained for patient characteristics, sports participation, patient-reported measures of functional capabilities and limitations, physical examination, diagnostic imaging results, and initial treatment plan. Descriptive statistics were completed for all outcomes of interest. RESULTS: As of November 2020, a total of 27 orthopaedic surgeons from 17 institutions had enrolled 1004 knees with OCD, representing 903 patients (68.9% males; median age, 13.1 years; range, 6.3-25.4 years), into the prospective cohort. Lesions were located on the medial femoral condyle (66.2%), lateral femoral condyle (18.1%), trochlea (9.5%), patella (6.0%), and tibial plateau (0.2%). Most cases involved multisport athletes (68.1%), with the most common primary sport being basketball for males (27.3% of cases) and soccer for females (27.6% of cases). The median Pediatric International Knee Documentation Committee (Pedi-IKCD) score was 59.9 (IQR, 45.6-73.9), and the median Pediatric Functional Activity Brief Scale (Pedi-FABS) score was 21.0 (IQR, 5.0-28.0). Initial treatments were surgical intervention (55.4%) and activity restriction (44.0%). When surgery was performed, surgeons deemed the lesion to be stable at intraoperative assessment in 48.1% of cases. CONCLUSION: The multicenter ROCK group has been able to enroll the largest knee OCD cohort to date. This information is being used to further understand the pathology of OCD, including its cause, associated comorbidities, and initial presentation and symptoms. The cohort having been established is now being followed longitudinally to better define and elucidate the best treatment algorithms based on these presenting signs and symptoms.


Assuntos
Osteocondrite Dissecante , Adolescente , Criança , Estudos Transversais , Feminino , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Masculino , Osteocondrite Dissecante/diagnóstico por imagem , Osteocondrite Dissecante/epidemiologia , Estudos Prospectivos , Estudos Retrospectivos
10.
Orthop J Sports Med ; 9(9): 23259671211028269, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34552991

RESUMO

BACKGROUND: Understanding the morphology of cartilage/bony maturation in preadolescents may help explain adult trochlear variation. PURPOSE: To study trochlear morphology during maturation in children and infants using magnetic resonance imaging (MRI). STUDY DESIGN: Descriptive laboratory study. METHODS: Twenty-four pediatric cadaveric knees (10 male and 14 female knees; age, 1 month to 10 years) were included. High-resolution imaging of the distal femoral secondary ossification center was performed using 7-T or 9.4-T MRI scanners. Three-dimensional MRI scans were produced, and images were reformatted; 3 slices in the axial, sagittal, and coronal planes images were analyzed, with coronal and sagittal imaging used for image orientation. Biometric analysis included lateral and medial trochlear height (TH); cartilaginous sulcus angle (CSA); osseous sulcus angle (OSA); trochlear depth; and trochlear facet (TF) length symmetry. Sex comparisons were considered when ≥1 specimen from both sexes of the same age was available; these included 11 knees spanning 4 age groups (ages 1, 3, 4, and 7 years). RESULTS: The analysis of trochlear morphology showed a lateral TH greater than the medial TH at all ages. The thickest cartilage was found on the lateral TF in the younger specimens. Regarding the development of osseous and cartilaginous trochlear contour, a cartilaginous sulcus was present in the 3-month-old specimen and continued to deepen up to the age of 4 years. The shape of the osseous center evolved from round (1 month) to oval (9 months) to rectangular (2 years); no distinct bony trochlear sulcus was present, although a well-formed cartilaginous sulcus was present. The first evidence of formation of a bony sulcus was at 4 years. By the age of 7 to 8 years, the bony contour of the adult distal femur resembled its cartilaginous contour. Female samples had a shallower CSA and OSA than did the male ones in all samples that had a defined OSA. CONCLUSION: Female trochlear grooves tended to be shallower (flatter). The lateral trochlea was higher (TH) and wider (TF length) during growth than was the medial trochlea in both sexes; furthermore, the development of the osseous sulcus shape lagged behind the development of the cartilaginous sulcus shape in the authors' study population. CLINICAL RELEVANCE: Bony anatomy of the trochlear groove did not match the cartilaginous anatomy in preadolescent children, suggesting that caution should be used when interpreting bony anatomy in this age group.

11.
J Bone Joint Surg Am ; 103(12): 1132-1151, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34109940

RESUMO

➤: Osteochondritis dissecans occurs most frequently in the active pediatric and young adult populations, commonly affecting the knee, elbow, or ankle, and may lead to premature osteoarthritis. ➤: While generally considered an idiopathic phenomenon, various etiopathogenetic theories are being investigated, including local ischemia, aberrant endochondral ossification of the secondary subarticular physis, repetitive microtrauma, and genetic predisposition. ➤: Diagnosis is based on the history, physical examination, radiography, and advanced imaging, with elbow ultrasonography and novel magnetic resonance imaging protocols potentially enabling early detection and in-depth staging. ➤: Treatment largely depends on skeletal maturity and lesion stability, defined by the presence or absence of articular cartilage fracture and subchondral bone separation, as determined by imaging and arthroscopy, and is typically nonoperative for stable lesions in skeletally immature patients and operative for those who have had failure of conservative management or have unstable lesions. ➤: Clinical practice guidelines have been limited by a paucity of high-level evidence, but a multicenter effort is ongoing to develop accurate and reliable classification systems and multimodal decision-making algorithms with prognostic value.


Assuntos
Osteocondrite Dissecante , Artroscopia , Humanos , Osteocondrite Dissecante/diagnóstico , Osteocondrite Dissecante/etiologia , Osteocondrite Dissecante/terapia , Radiografia
12.
Radiology ; 300(1): E296-E300, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33625300

RESUMO

Five cases of axillary lymphadenopathy are presented, which occurred after COVID-19 vaccination and mimicked metastasis in a vulnerable oncologic patient group. Initial radiologic diagnosis raised concerns for metastasis. However, further investigation revealed that patients received COVID-19 vaccinations in the ipsilateral arm prior to imaging. In two cases, lymph node biopsy results confirmed vaccination-related reactive lymphadenopathy. Ipsilateral axillary swelling or lymphadenopathy was reported based on symptoms and physical examination in COVID-19 vaccine trials. Knowledge of the potential for COVID-19 vaccine-related ipsilateral adenopathy is necessary to avoid unnecessary biopsy and change in therapy. © RSNA, 2021.


Assuntos
Neoplasias da Mama/patologia , Vacinas contra COVID-19/efeitos adversos , Lipossarcoma Mixoide/patologia , Linfadenopatia/diagnóstico por imagem , Linfadenopatia/etiologia , Metástase Linfática/diagnóstico , Melanoma/patologia , Adulto , COVID-19/prevenção & controle , Diagnóstico Diferencial , Feminino , Humanos , Linfonodos/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , SARS-CoV-2
13.
Magn Reson Imaging Clin N Am ; 29(1): e1-e19, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33237019

RESUMO

Especially after the launch of 7 T, the ultrahigh magnetic field (UHF) imaging community achieved critically important strides in our understanding of the physics of radiofrequency interactions in the human body, which in turn has led to solutions for the challenges posed by such UHFs. As a result, the originally obtained poor image quality has progressed to the high-quality and high-resolution images obtained at 7 T and now at 10.5 T in the human torso. Despite these tremendous advances, work still remains to further improve the image quality and fully capitalize on the potential advantages UHF has to offer.


Assuntos
Imageamento por Ressonância Magnética/métodos , Tronco/diagnóstico por imagem , Humanos
14.
Skeletal Radiol ; 49(12): 1987-1994, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32564102

RESUMO

OBJECTIVE: To evaluate whether a commonly used surgical grading scale, when applied to acetabular labral findings on MRI, could improve preoperative planning and counseling for patients undergoing hip arthroscopy. MATERIALS AND METHODS: We evaluated 76 clinical MRIs performed on patients with femoroacetabular impingement. Three musculoskeletal radiologists and one musculoskeletal fellow reviewed each scan in a blinded fashion, classifying the acetabular labrum from 12:00 to 4:00 using the Beck scale, a common surgical grading scale. Clinical correlation was provided via surgical examination and classification. Reliability was determined between readers and between reader and surgical data using Cohen's kappa and Krippendorff's alpha at each clock position and for the worst grading for each scan. In addition, a simplified version of the scale comprised of only two grades, potentially reparable and not potentially reparable, was evaluated. RESULTS: When the scale was simplified into categories of potentially reparable and not potentially reparable, the sensitivity was excellent, ranging from 85.5 to 96%. Observer agreement when using individual Beck grades was found to range from poor to fair; Kappa ranged from 0.03 to 0.19, and Alpha ranged from - 0.27 to 0.22. CONCLUSION: The simplified version of the Beck labral scale when applied to MRI is a highly sensitive predictor of potentially reparable labral pathology while excluding normal and grossly degenerative tissue. Use of this scale provides clinically relevant information that can drive preoperative planning and improve patient counseling. It does so in a standardized fashion that can be applied across practice sites and without additional cost.


Assuntos
Cartilagem Articular , Impacto Femoroacetabular , Acetábulo/diagnóstico por imagem , Acetábulo/cirurgia , Artroscopia , Impacto Femoroacetabular/diagnóstico por imagem , Impacto Femoroacetabular/cirurgia , Articulação do Quadril , Humanos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
16.
J Magn Reson Imaging ; 50(1): 106-113, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30556613

RESUMO

BACKGROUND: Legg-Calvé-Perthes disease (LCPD) is a childhood hip disorder thought to be caused by disruption of blood supply to the developing femoral head. There is potential for imaging to help assess revascularization of the femoral head. PURPOSE: To investigate whether quantitative susceptibility mapping (QSM) can detect neovascularization in the epiphyseal cartilage following ischemic injury to the developing femoral head. STUDY TYPE: Prospective. ANIMAL MODEL: Right femoral head ischemia was surgically induced in 6-week-old male piglets. The animals were sacrificed 48 hours (n = 3) or 4 weeks (n = 7) following surgery, and the operated and contralateral control femoral heads were harvested for ex vivo MRI. FIELD STRENGTH/SEQUENCE: Preclinical 9.4T MRI to acquire susceptibility-weighted 3D gradient echo (GRE) images with 0.1 mm isotropic spatial resolution. ASSESSMENT: The 3D GRE images were used to manually segment the cartilage overlying the femoral head and were subsequently postprocessed using QSM. Vessel volume, cartilage volume, and vessel density were measured and compared between operated and control femoral heads at each timepoint. Maximum intensity projections of the QSM images were subjectively assessed to identity differences in cartilage canal appearance, location, and density. STATISTICAL TESTS: Paired t-tests with Bonferroni correction were used (P < 0.008 considered significant). RESULTS: Increased vascularity of the epiphyseal cartilage following ischemic injury was clearly identified using QSM. No changes were detected 48 hours after surgery. Vessel volume, cartilage volume, and vessel density were all increased in the operated vs. control femoral heads 4 weeks after surgery (P = 0.001, 0.002, and 0.001, respectively). Qualitatively, the increase in vessel density at 4 weeks was due to the formation of new vessels that were organized in a brush-like orientation in the epiphyseal cartilage, consistent with the histological appearance of neovascularization. DATA CONCLUSION: QSM can detect neovascularization in the epiphyseal cartilage following ischemic injury to the femoral head. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:106-113.


Assuntos
Cartilagem/diagnóstico por imagem , Epífises/diagnóstico por imagem , Doença de Legg-Calve-Perthes/diagnóstico por imagem , Imageamento por Ressonância Magnética , Animais , Meios de Contraste , Cabeça do Fêmur/diagnóstico por imagem , Isquemia/diagnóstico por imagem , Masculino , Neovascularização Fisiológica , Suínos
17.
Artigo em Inglês | MEDLINE | ID: mdl-32043049

RESUMO

We introduce a quantitative measure of epiphyseal cartilage vascularity and examine vessel networks during human skeletal maturation. Understanding early morphological changes in the distal femoral condyle is expected to provide information on the pathogenesis of developmental diseases such as juvenile osteochondritis dissecans. METHODS: Twenty-two cadaveric knees from donors ranging from 1 month to 10 years of age were included in the study. Images of bone, cartilage, and vascularity were acquired simultaneously with a 3-dimensional gradient-recalled-echo magnetic resonance imaging (MRI) sequence. The secondary ossification center volume and total epiphysis cartilage volume ratio and articular-epiphyseal cartilage complex and epiphyseal cartilage widths were measured. Epiphyseal cartilage vascularity was visualized for 9 data sets with quantitative susceptibility mapping and vessel filtering, resulting in 3-dimensional data to inform vessel network segmentation and to calculate vascular density. RESULTS: Three distinct, non-anastomosing vascular networks (2 peripheral and 1 central) supply the distal femoral epiphyseal cartilage. The central network begins regression as early as 3 months and is absent by 4 years. From 1 month to 3 years, the ratio of central to peripheral vascular area density decreased from 1.0 to 0.5, and the ratio of central to peripheral vascular skeletal density decreased from 0.9 to 0.6. A narrow, peripheral vascular rim was present at 8 years but had disappeared by 10 years. The secondary ossification center progressively acquires the shape of the articular-epiphyseal cartilage complex by 8 years of age, and the central areas of the medial and lateral femoral condyles are the last to ossify. CONCLUSIONS: Using cadaveric pediatric knees, we provide quantitative, 3-dimensional measures of epiphyseal cartilage vascular regression during skeletal development using vessel image features. Central areas with both early vascular regression and delayed ossification correspond to predilection sites of juvenile osteochondritis dissecans in this limited case series. Our findings highlight specific vascular vulnerabilities that may lead to improved understanding of the pathogenesis and better-informed clinical management decisions in developmental skeletal diseases. CLINICAL RELEVANCE: This paradigm shift in understanding of juvenile osteochondritis dissecans etiology and disease progression may critically impact future patient management. Our findings highlight specific vascular vulnerabilities during skeletal maturation in a group of active young patients seen primarily by orthopaedic surgeons and sports medicine professionals.

18.
J Bone Joint Surg Am ; 100(24): 2132-2139, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30562294

RESUMO

BACKGROUND: The pathogenesis of human juvenile osteochondritis dissecans (JOCD) remains poorly understood, with multiple factors implicated, including ischemia, repetitive trauma, and genetic predisposition. Similarities in the predilection site and the diagnostic and clinical features of JOCD to the well-characterized veterinary counterpart, osteochondrosis dissecans, suggest that, similar to the animal disease, the pathogenesis JOCD may also be initiated in the first few years of life, when disruption of blood supply to the epiphyseal growth cartilage leads to failure of endochondral ossification. To gather data in support of the hypothesis that JOCD and osteochondrosis dissecans have a shared pathogenesis, biopsy specimens obtained from predilection sites of JOCD in juvenile human cadavers were histologically examined to determine whether they contained lesions similar to those found in animals diagnosed with subclinical osteochondrosis dissecans. METHODS: In this descriptive laboratory study, 59 biopsy specimens (6 mm in diameter) were harvested from the central aspect (i.e., the notch side) of the femoral condyles of 26 human cadavers (1 month to 11 years old). Specimens were histologically evaluated for the presence of areas of cartilage necrosis and the morphology of cartilage canal blood vessels. RESULTS: Locally extensive areas of necrotic epiphyseal cartilage were identified in 4 specimens obtained from 3 donors (ages 2 to 4 years). Areas of cartilage necrosis accompanied by focal failure of endochondral ossification or surrounded by subchondral bone were identified in biopsy specimens from 4 donors (ages 4 to 9 years). CONCLUSIONS: The identification of epiphyseal cartilage necrosis identical to that described in animals with subclinical osteochondrosis, found in biopsy specimens obtained from femoral predilection sites of JOCD in pediatric cadavers, suggests a shared pathogenesis of JOCD in humans and osteochondrosis dissecans in animals. CLINICAL RELEVANCE: These findings imply that the pathogenesis of human JOCD likely starts 5 to 10 years prior to the development of clinical symptoms. Enhanced understanding of the temporal features of JOCD pathogenesis provides an opportunity for earlier diagnosis and treatment, likely resulting in improved outcomes for this condition in the future.


Assuntos
Lâmina de Crescimento/patologia , Osteocondrite Dissecante/patologia , Distribuição por Idade , Cadáver , Criança , Pré-Escolar , Feminino , Fêmur/patologia , Humanos , Lactente , Recém-Nascido , Masculino , Necrose/patologia
19.
Radiology ; 289(2): 386-395, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30063188

RESUMO

Purpose To determine whether quantitative MRI relaxation time mapping techniques can help to detect ischemic injury to the developing femoral head. Materials and Methods For this prospective animal study conducted from November 2015 to February 2018, 10 male 6-week-old piglets underwent an operation to induce complete right femoral head ischemia. Animals were humanely killed at 48 hours (n = 2) or 4 weeks (n = 8) after the operation, and the operated and contralateral-control femoral heads were harvested and frozen. Thawed specimens were imaged at 9.4-T MRI by using T1, T2, T1 in the rotating frame (T1ρ), adiabatic T1ρ, relaxation along a fictitious field (RAFF), and T2* mapping and evaluated with histologic analysis. Paired relaxation time differences between the operated and control femoral heads were measured in the secondary ossification center (SOC), epiphyseal cartilage, articular cartilage, and metaphysis and were analyzed by using a paired t test. Results In the SOC, T1ρ and RAFF had the greatest percent increases in the operated versus control femoral heads at both 48 hours (112% and 72%, respectively) and 4 weeks (74% and 70%, respectively). In the epiphyseal and articular cartilage, T2, T1ρ, and RAFF were similarly increased at both points (range, 24%-49%). At 4 weeks, T2, T1ρ, adiabatic T1ρ, and RAFF were increased in the SOC (P = .004, .018, < .001, and .001, respectively), epiphyseal cartilage (P = .009, .008, .011, and .007, respectively), and articular cartilage (P = .005, .016, .033, and .018, respectively). Histologic assessment identified necrosis in SOC and deep layer of the epiphyseal cartilage at both points. Conclusion T2, T1 in the rotating frame, adiabatic T1 in the rotating frame, and relaxation along a fictitious field maps are sensitive in helping to detect ischemic injury to the developing femoral head. © RSNA, 2018 Online supplemental material is available for this article.


Assuntos
Articulação do Quadril/diagnóstico por imagem , Isquemia/diagnóstico por imagem , Doença de Legg-Calve-Perthes/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Animais , Modelos Animais de Doenças , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/patologia , Articulação do Quadril/patologia , Isquemia/patologia , Doença de Legg-Calve-Perthes/patologia , Masculino , Estudos Prospectivos , Suínos
20.
Sports Med Arthrosc Rev ; 25(4): 227-236, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29095402

RESUMO

The patellofemoral joint is an articulation between the patella and the femoral trochlea, which serves to increase the lever arm of the extensor mechanism. The stability of the patella within the trochlear groove is supported statically by the bony confines of the groove itself, as well as the medial patellofemoral ligament, and dynamically by the vastus musculature. Pathologic changes seen on magnetic resonance imaging (MRI) are frequently well correlated with findings found by arthroscopy at the time of surgery. Degenerative changes to the articular cartilage, osteochondral lesions and loose bodies, tears in the retinaculum, and the medial patellofemoral ligament can be seen in MRI and are well correlated with arthroscopy. In addition, other findings that may predispose an individual to injury or degenerative changes over time, such as patella alta and trochlear dysplasia, can also be assessed by MRI and observed arthroscopically.


Assuntos
Artroscopia , Imageamento por Ressonância Magnética , Articulação Patelofemoral/diagnóstico por imagem , Adolescente , Adulto , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/lesões , Feminino , Humanos , Ligamentos Articulares/diagnóstico por imagem , Ligamentos Articulares/lesões , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA