Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490339

RESUMO

X-linked myotubular myopathy (XLMTM) is a fatal congenital disorder caused by mutations in the MTM1 gene. Currently, there are no approved treatments, although AAV8-mediated gene transfer therapy has shown promise in animal models and preliminarily in patients. However, 4 patients with XLMTM treated with gene therapy have died from progressive liver failure, and hepatobiliary disease has now been recognized more broadly in association with XLMTM. In an attempt to understand whether loss of MTM1 itself is associated with liver pathology, we have characterized what we believe to be a novel liver phenotype in a zebrafish model of this disease. Specifically, we found that loss-of-function mutations in mtm1 led to severe liver abnormalities including impaired bile flux, structural abnormalities of the bile canaliculus, and improper endosome-mediated trafficking of canalicular transporters. Using a reporter-tagged Mtm1 zebrafish line, we established localization of Mtm1 in the liver in association with Rab11, a marker of recycling endosomes, and canalicular transport proteins and demonstrated that hepatocyte-specific reexpression of Mtm1 could rescue the cholestatic phenotype. Last, we completed a targeted chemical screen and found that Dynasore, a dynamin-2 inhibitor, was able to partially restore bile flow and transporter localization to the canalicular membrane. In summary, we demonstrate, for the first time to our knowledge, liver abnormalities that were directly caused by MTM1 mutation in a preclinical model, thus establishing the critical framework for better understanding and comprehensive treatment of the human disease.


Assuntos
Miopatias Congênitas Estruturais , Peixe-Zebra , Animais , Humanos , Modelos Animais de Doenças , Proteínas de Membrana Transportadoras/metabolismo , Músculo Esquelético/metabolismo , Mutação , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Miopatias Congênitas Estruturais/patologia , Proteínas Tirosina Fosfatases não Receptoras/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Hepatol Commun ; 6(11): 3083-3097, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36017776

RESUMO

Hepatic cysts are fluid-filled lesions in the liver that are estimated to occur in 5% of the population. They may cause hepatomegaly and abdominal pain. Progression to secondary fibrosis, cirrhosis, or cholangiocarcinoma can lead to morbidity and mortality. Previous studies of patients and rodent models have associated hepatic cyst formation with increased proliferation and fluid secretion in cholangiocytes, which are partially due to impaired primary cilia. Congenital hepatic cysts are thought to originate from faulty bile duct development, but the underlying mechanisms are not fully understood. In a forward genetic screen, we identified a zebrafish mutant that developed hepatic cysts during larval stages. The cyst formation was not due to changes in biliary cell proliferation, bile secretion, or impairment of primary cilia. Instead, time-lapse live imaging data showed that the mutant biliary cells failed to form interconnecting bile ducts because of defects in motility and protrusive activity. Accordingly, immunostaining revealed a disorganized actin and microtubule cytoskeleton in the mutant biliary cells. By whole-genome sequencing, we determined that the cystic phenotype in the mutant was caused by a missense mutation in the furinb gene, which encodes a proprotein convertase. The mutation altered Furinb localization and caused endoplasmic reticulum (ER) stress. The cystic phenotype could be suppressed by treatment with the ER stress inhibitor 4-phenylbutyric acid and exacerbated by treatment with the ER stress inducer tunicamycin. The mutant liver also exhibited increased mammalian target of rapamycin (mTOR) signaling. Treatment with mTOR inhibitors halted cyst formation at least partially through reducing ER stress. Conclusion: Our study has established a vertebrate model for studying hepatic cystogenesis and illustrated the contribution of ER stress in the disease pathogenesis.


Assuntos
Cistos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Pró-Proteína Convertases/genética , Mutação de Sentido Incorreto/genética , Tunicamicina , Actinas/genética , Modelos Animais de Doenças , Fígado/patologia , Cistos/genética , Serina-Treonina Quinases TOR/genética , Mamíferos
3.
Gastroenterology ; 161(1): 287-300.e16, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33771553

RESUMO

BACKGROUND & AIMS: The etiology of cholestasis remains unknown in many children. We surveyed the genome of children with chronic cholestasis for variants in genes not previously associated with liver disease and validated their biological relevance in zebrafish and murine models. METHOD: Whole-exome (n = 4) and candidate gene sequencing (n = 89) was completed on 93 children with cholestasis and normal serum γ-glutamyl transferase (GGT) levels without pathogenic variants in genes known to cause low GGT cholestasis such as ABCB11 or ATP8B1. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 genome editing was used to induce frameshift pathogenic variants in the candidate gene in zebrafish and mice. RESULTS: In a 1-year-old female patient with normal GGT cholestasis and bile duct paucity, we identified a homozygous truncating pathogenic variant (c.198delA, p.Gly67Alafs∗6) in the ABCC12 gene (NM_033226). Five additional rare ABCC12 variants, including a pathogenic one, were detected in our cohort. ABCC12 encodes multidrug resistance-associated protein 9 (MRP9) that belongs to the adenosine 5'-triphosphate-binding cassette transporter C family with unknown function and no previous implication in liver disease. Immunohistochemistry and Western blotting revealed conserved MRP9 protein expression in the bile ducts in human, mouse, and zebrafish. Zebrafish abcc12-null mutants were prone to cholangiocyte apoptosis, which caused progressive bile duct loss during the juvenile stage. MRP9-deficient mice had fewer well-formed interlobular bile ducts and higher serum alkaline phosphatase levels compared with wild-type mice. They exhibited aggravated cholangiocyte apoptosis, hyperbilirubinemia, and liver fibrosis upon cholic acid challenge. CONCLUSIONS: Our work connects MRP9 with bile duct homeostasis and cholestatic liver disease for the first time. It identifies a potential therapeutic target to attenuate bile acid-induced cholangiocyte injury.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Ductos Biliares Intra-Hepáticos/patologia , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/patologia , Mutação , Proteínas de Peixe-Zebra/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose , Ductos Biliares Intra-Hepáticos/metabolismo , Estudos de Casos e Controles , Colestase Intra-Hepática/metabolismo , Doença Crônica , Feminino , Edição de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lactente , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Sequenciamento do Exoma , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
4.
Hepatology ; 70(6): 2107-2122, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31016744

RESUMO

The growing burden of liver fibrosis and lack of effective antifibrotic therapies highlight the need for identification of pathways and complementary model systems of hepatic fibrosis. A rare, monogenic disorder in which children with mutations in mannose phosphate isomerase (MPI) develop liver fibrosis led us to explore the function of MPI and mannose metabolism in liver development and adult liver diseases. Herein, analyses of transcriptomic data from three human liver cohorts demonstrate that MPI gene expression is down-regulated proportionate to fibrosis in chronic liver diseases, including nonalcoholic fatty liver disease and hepatitis B virus. Depletion of MPI in zebrafish liver in vivo and in human hepatic stellate cell (HSC) lines in culture activates fibrotic responses, indicating that loss of MPI promotes HSC activation. We further demonstrate that mannose supplementation can attenuate HSC activation, leading to reduced fibrogenic activation in zebrafish, culture-activated HSCs, and in ethanol-activated HSCs. Conclusion: These data indicate the prospect that modulation of mannose metabolism pathways could reduce HSC activation and improve hepatic fibrosis.


Assuntos
Células Estreladas do Fígado/fisiologia , Cirrose Hepática/etiologia , Manose-6-Fosfato Isomerase/fisiologia , Manose/farmacologia , Animais , Células Cultivadas , Glicosilação , Humanos , Masculino , Fator de Crescimento Derivado de Plaquetas/fisiologia , Transdução de Sinais/fisiologia , Peixe-Zebra
5.
Hepatology ; 67(4): 1531-1545, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29091294

RESUMO

Bile salt export pump (BSEP) adenosine triphosphate-binding cassette B11 (ABCB11) is a liver-specific ABC transporter that mediates canalicular bile salt excretion from hepatocytes. Human mutations in ABCB11 cause progressive familial intrahepatic cholestasis type 2. Although over 150 ABCB11 variants have been reported, our understanding of their biological consequences is limited by the lack of an experimental model that recapitulates the patient phenotypes. We applied CRISPR/Cas9-based genome editing technology to knock out abcb11b, the ortholog of human ABCB11, in zebrafish and found that these mutants died prematurely. Histological and ultrastructural analyses showed that abcb11b mutant zebrafish exhibited hepatocyte injury similar to that seen in patients with progressive familial intrahepatic cholestasis type 2. Hepatocytes of mutant zebrafish failed to excrete the fluorescently tagged bile acid that is a substrate of human BSEP. Multidrug resistance protein 1, which is thought to play a compensatory role in Abcb11 knockout mice, was mislocalized to the hepatocyte cytoplasm in abcb11b mutant zebrafish and in a patient lacking BSEP protein due to nonsense mutations in ABCB11. We discovered that BSEP deficiency induced autophagy in both human and zebrafish hepatocytes. Treatment with rapamycin restored bile acid excretion, attenuated hepatocyte damage, and extended the life span of abcb11b mutant zebrafish, correlating with the recovery of canalicular multidrug resistance protein 1 localization. CONCLUSIONS: Collectively, these data suggest a model that rapamycin rescues BSEP-deficient phenotypes by prompting alternative transporters to excrete bile salts; multidrug resistance protein 1 is a candidate for such an alternative transporter. (Hepatology 2018;67:1531-1545).


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Bile/metabolismo , Colestase Intra-Hepática/genética , Hepatócitos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Autofagia/genética , Colestase Intra-Hepática/patologia , Feminino , Humanos , Imunossupressores/farmacologia , Lactente , Fígado/patologia , Masculino , Mutação , Sirolimo/farmacologia , Peixe-Zebra/metabolismo
6.
J Vis Exp ; (123)2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28570521

RESUMO

Alcoholic Liver Disease (ALD) refers to damage to the liver due to acute or chronic alcohol abuse. It is among the leading causes of alcohol-related morbidity and mortality and affects more than 2 million people in the United States. A better understanding of the cellular and molecular mechanisms underlying alcohol-induced liver injury is crucial for developing effective treatment for ALD. Zebrafish larvae exhibit hepatic steatosis and fibrogenesis after just 24 h of exposure to 2% ethanol, making them useful for the study of acute alcoholic liver injury. This work describes the procedure for acute ethanol treatment in zebrafish larvae and shows that it causes steatosis and swelling of the hepatic blood vessels. A detailed protocol for Hematoxylin and Eosin (H&E) staining that is optimized for the histological analysis of the zebrafish larval liver, is also described. H&E staining has several unique advantages over immunofluorescence, as it marks all liver cells and extracellular components simultaneously and can readily detect hepatic injury, such as steatosis and fibrosis. Given the increasing usage of zebrafish in modeling toxin and virus-induced liver injury, as well as inherited liver diseases, this protocol serves as a reference for the histological analyses performed in all these studies.


Assuntos
Fígado Gorduroso Alcoólico/patologia , Fígado/patologia , Animais , Vasos Sanguíneos/patologia , Corantes , Amarelo de Eosina-(YS) , Etanol/toxicidade , Fígado Gorduroso Alcoólico/veterinária , Fibrose , Hematoxilina , Técnicas Histológicas , Larva , Fígado/irrigação sanguínea , Fígado/efeitos dos fármacos , Peixe-Zebra
7.
Dis Model Mech ; 9(11): 1383-1396, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27562099

RESUMO

Alcoholic liver disease (ALD) results from alcohol overconsumption and is among the leading causes of liver-related morbidity and mortality worldwide. Elevated expression of vascular endothelial growth factor (VEGF) and its receptors has been observed in ALD, but how it contributes to ALD pathophysiology is unclear. Here, we investigated the impact of VEGF signaling inhibition on an established zebrafish model of acute alcoholic liver injury. Kdrl activity was blocked by chemical inhibitor treatment or by genetic mutation. Exposing 4-day-old zebrafish larvae to 2% ethanol for 24 h induced hepatic steatosis, angiogenesis and fibrogenesis. The liver started self-repair once ethanol was removed. Although inhibiting Kdrl did not block the initial activation of hepatic stellate cells during ethanol treatment, it suppressed their proliferation, extracellular matrix protein deposition and fibrogenic gene expression after ethanol exposure, thus enhancing the liver repair. It also ameliorated hepatic steatosis and attenuated hepatic angiogenesis that accelerated after the ethanol treatment. qPCR showed that hepatic stellate cells are the first liver cell type to increase the expression of VEGF ligand and receptor genes in response to ethanol exposure. Both hepatic stellate cells and endothelial cells, but not hepatic parenchymal cells, expressed kdrl upon ethanol exposure and were likely the direct targets of Kdrl inhibition. Ethanol-induced steatosis and fibrogenesis still occurred in cloche mutants that have hepatic stellate cells but lack hepatic endothelial cells, and Kdrl inhibition suppressed both phenotypes in the mutants. These results suggest that VEGF signaling mediates interactions between activated hepatic stellate cells and hepatocytes that lead to steatosis. Our study demonstrates the involvement of VEGF signaling in regulating sustained liver injuries after acute alcohol exposure. It also provides a proof of principle of using the zebrafish model to identify molecular targets for developing ALD therapies.


Assuntos
Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Regeneração Hepática , Fígado/patologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Etanol , Proteínas da Matriz Extracelular/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Larva/metabolismo , Ligantes , Hepatopatias Alcoólicas/genética , Regeneração Hepática/efeitos dos fármacos , Mutação/genética , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Quinazolinas/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA