Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
2.
Nat Cell Biol ; 23(9): 932-933, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34475535
3.
Nature ; 569(7757): 497-502, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31092920

RESUMO

Cell competition-the sensing and elimination of less fit 'loser' cells by neighbouring 'winner' cells-was first described in Drosophila. Although cell competition has been proposed as a selection mechanism to optimize tissue and organ development, its evolutionary generality remains unclear. Here, by using live imaging, lineage tracing, single-cell transcriptomics and genetics, we identify two cell competition mechanisms that sequentially shape and maintain the architecture of stratified tissue during skin development in mice. In the single-layered epithelium of the early embryonic epidermis, winner progenitors kill and subsequently clear neighbouring loser cells by engulfment. Later, as the tissue begins to stratify, the basal layer instead expels losers through upward flux of differentiating progeny. This cell competition switch is physiologically relevant: when it is perturbed, so too is barrier formation. Our findings show that cell competition is a selective force that optimizes vertebrate tissue function, and illuminate how a tissue dynamically adjusts cell competition strategies to preserve fitness as its architectural complexity increases during morphogenesis.


Assuntos
Comunicação Celular , Células Epidérmicas/citologia , Epiderme/embriologia , Morfogênese , Animais , Apoptose , Células Clonais/citologia , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Células Epidérmicas/metabolismo , Feminino , Masculino , Camundongos , Fagocitose , RNA-Seq , Análise de Célula Única
4.
Dev Cell ; 39(5): 611-625, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27923121

RESUMO

Tissue morphogenesis requires force-generating mechanisms to organize cells into complex structures. Although many such mechanisms have been characterized, we know little about how forces are integrated across developing tissues. We provide evidence that integrin-mediated cell-extracellular matrix (ECM) adhesion modulates the transmission of apically generated tension during dorsal closure (DC) in Drosophila. Integrin-containing adhesive structures resembling focal adhesions were identified on the basal surface of the amnioserosa (AS), an extraembryonic epithelium essential for DC. Genetic modulation of integrin-mediated adhesion results in defective DC. Quantitative image analysis and laser ablation experiments reveal that basal cell-ECM adhesions provide resistance to apical cell displacements and force transmission between neighboring cells in the AS. Finally, we provide evidence for integrin-dependent force transmission to the AS substrate. Overall, we find that integrins regulate force transmission within and between cells, thereby playing an essential role in transmitting tension in developing tissues.


Assuntos
Drosophila/embriologia , Animais , Animais Geneticamente Modificados , Fenômenos Biofísicos , Adesão Celular/fisiologia , Drosophila/citologia , Drosophila/fisiologia , Proteínas de Drosophila/fisiologia , Matriz Extracelular/fisiologia , Adesões Focais/fisiologia , Integrinas/fisiologia , Modelos Biológicos , Morfogênese/fisiologia
5.
PLoS Genet ; 10(11): e1004756, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25393120

RESUMO

Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development.


Assuntos
Adesão Celular/genética , Desenvolvimento Embrionário/genética , Integrinas/genética , Talina/genética , Alelos , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Drosophila melanogaster/embriologia , Embrião não Mamífero , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Integrinas/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína , Talina/metabolismo
6.
Curr Biol ; 23(18): 1825-33, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24012314

RESUMO

The establishment of a multicellular body plan requires coordinating changes in cell adhesion and the cytoskeleton to ensure proper cell shape and position within a tissue. Cell adhesion to the extracellular matrix (ECM) via integrins plays diverse, essential roles during animal embryogenesis and therefore must be precisely regulated. Talin, a FERM-domain containing protein, forms a direct link between integrin adhesion receptors and the actin cytoskeleton and is an important regulator of integrin function. Similar to other FERM proteins, talin makes an intramolecular interaction that could autoinhibit its activity. However, the functional consequence of such an interaction has not been previously explored in vivo. Here, we demonstrate that targeted disruption of talin autoinhibition gives rise to morphogenetic defects during fly development and specifically that dorsal closure (DC), a process that resembles wound healing, is delayed. Impairment of autoinhibition leads to reduced talin turnover at and increased talin and integrin recruitment to sites of integrin-ECM attachment. Finally, we present evidence that talin autoinhibition is regulated by Rap1-dependent signaling. Based on our data, we propose that talin autoinhibition provides a switch for modulating adhesion turnover and adhesion stability that is essential for morphogenesis.


Assuntos
Drosophila/crescimento & desenvolvimento , Morfogênese/genética , Talina/genética , Animais , Drosophila/embriologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Mutação , Transdução de Sinais , Talina/fisiologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/fisiologia
7.
J Cell Sci ; 125(Pt 23): 5647-57, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22992465

RESUMO

Integrins are heterodimeric adhesion receptors that link the extracellular matrix (ECM) to the cytoskeleton. Binding of the scaffold protein, talin, to the cytoplasmic tail of ß-integrin causes a conformational change of the extracellular domains of the integrin heterodimer, thus allowing high-affinity binding of ECM ligands. This essential process is called integrin activation. Here we report that the Z-band alternatively spliced PDZ-motif-containing protein (Zasp) cooperates with talin to activate α5ß1 integrins in mammalian tissue culture and αPS2ßPS integrins in Drosophila. Zasp is a PDZ-LIM-domain-containing protein mutated in human cardiomyopathies previously thought to function primarily in assembly and maintenance of the muscle contractile machinery. Notably, Zasp is the first protein shown to co-activate α5ß1 integrins with talin and appears to do so in a manner distinct from known αIIbß3 integrin co-activators.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Integrinas/metabolismo , Animais , Drosophila , Matriz Extracelular/metabolismo , Humanos , Integrina alfa5beta1/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Talina/metabolismo
8.
Nat Cell Biol ; 14(9): 935-43, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22885771

RESUMO

Regulated assembly and disassembly, or turnover, of integrin-mediated cell-extracellular matrix (ECM) adhesions is essential for dynamic cell movements and long-term tissue maintenance. For example, in Drosophila, misregulation of integrin turnover disrupts muscle-tendon attachment at myotendinous junctions (MTJs). We demonstrate that mechanical force, which modulates integrin activity, also regulates integrin and intracellular adhesion complex (IAC) turnover in vivo. Using conditional mutants to alter the tensile force on MTJs, we found that the proportion of IAC components undergoing turnover inversely correlated with the force applied on MTJs. This effect was disrupted by point mutations in ß-integrin that interfere with ECM-induced conformational changes and activation of ß-integrin or integrin-mediated cytoplasmic signalling. These mutants also disrupted integrin dynamics at MTJs during larval development. Together, these data suggest that specific ß-integrin-mediated signals regulate adhesion turnover in response to tension during tissue formation. We propose that integrin-ECM adhesive stability is continuously controlled by force in vivo through integrin-dependent auto-regulatory feedback mechanisms so that tissues can quickly adapt to and withstand mechanical stresses.


Assuntos
Junções Célula-Matriz/fisiologia , Drosophila/fisiologia , Matriz Extracelular/fisiologia , Cadeias beta de Integrinas/metabolismo , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Junções Célula-Matriz/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/fisiologia , Drosophila/genética , Drosophila/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mutação Puntual , Estresse Mecânico , Tendões/metabolismo , Tendões/fisiologia
9.
J Cell Sci ; 124(Pt 11): 1844-56, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21558413

RESUMO

Adhesion receptors play diverse roles during animal development and require precise spatiotemporal regulation, which is achieved through the activity of their binding partners. Integrins, adhesion receptors that mediate cell attachment to the extracellular matrix (ECM), connect to the intracellular environment through the cytoplasmic adapter protein talin. Talin has two essential functions: orchestrating the assembly of the intracellular adhesion complex (IAC), which associates with integrin, and regulating the affinity of integrins for the ECM. Talin can bind to integrins through two different integrin-binding sites (IBS-1 and IBS-2, respectively). Here, we have investigated the roles of each in the context of Drosophila development. We find that although IBS-1 and IBS-2 are partially redundant, they each have specialized roles during development: IBS-1 reinforces integrin attachment to the ECM, whereas IBS-2 reinforces the link between integrins and the IAC. Disruption of each IBS has different developmental consequences, illustrating how the functional diversity of integrin-mediated adhesion is achieved.


Assuntos
Drosophila melanogaster/metabolismo , Integrinas/metabolismo , Talina/metabolismo , Animais , Sítios de Ligação , Adesão Celular , Drosophila melanogaster/crescimento & desenvolvimento , Matriz Extracelular/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Integrinas/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo
10.
Dev Biol ; 345(1): 64-77, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20599891

RESUMO

Transmembrane adhesion receptors, such as integrins, mediate cell adhesion by interacting with intracellular proteins that connect to the cytoskeleton. Talin, one such linker protein, is essential to connect extracellular matrix-bound integrins to the cytoskeleton. Talin can connect to the cytoskeleton either directly, through its actin-binding motifs, or indirectly, by recruiting other actin-binding proteins. Talin's carboxy-terminal end contains a well-characterized actin-binding domain (ABD). We tested the role of the C-terminal ABD of talin in integrin function in Drosophila. We found that introduction of mutations that reduced actin binding in vitro into the isolated C-terminal Talin-ABD impaired actin binding in vivo. Moreover, when engineered into full-length talin, these mutations disrupted a subset of integrin-mediated adhesion-dependent developmental events. Specifically, morphogenetic processes that involve dynamic, short-term integrin-mediated adhesion were particularly sensitive to impaired function of the C-terminal Talin-ABD. We propose that during development talin connects integrins to the cytoskeleton in distinct ways in different types of integrin-mediated adhesion: directly in transient adhesions and indirectly in stable long-lasting adhesions. Our results provide insight into how a similar array of molecular components can contribute to diverse adhesive processes throughout development.


Assuntos
Actinas/metabolismo , Proteínas de Drosophila/genética , Mutação , Talina/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sítios de Ligação/genética , Adesão Celular , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Integrinas/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Ligação Proteica , Homologia de Sequência de Aminoácidos , Talina/metabolismo , Talina/fisiologia , Asas de Animais/embriologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
11.
Dev Biol ; 338(1): 15-27, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19879257

RESUMO

Integrin-mediated adhesion to the ECM is essential for normal development of animal tissues. During muscle development, integrins provide the structural stability required to construct such a highly tensile, force generating tissue. Mutations that disrupt integrin-mediated adhesion in skeletal muscles give rise to a myopathy in humans and mice. To determine if this is due to defects in formation or defects in maintenance of muscle tissue, we used an inducible, targeted RNAi based approach to disrupt integrin-mediated adhesion in fully formed adult fly muscles. A decrease in integrin-mediated adhesion in adult muscles led to a progressive loss of muscle function due to a failure to maintain normal sarcomeric cytoarchitecture. This defect was due to a gradual, age dependent disorganization of the sarcomeric actin, Z-line, and M-line. Electron microscopic analysis showed that reduction in integrin-mediated adhesion resulted in detachment of actin filaments from the Z-lines, separation of the Z-lines from the membrane, and eventually to disintegration of the Z-lines. Our results show that integrin-mediated adhesion is essential for maintaining sarcomeric integrity and illustrate that the seemingly stable adhesive contacts underlying sarcomeric architecture are inherently dynamic.


Assuntos
Drosophila melanogaster/citologia , Integrinas/metabolismo , Sarcômeros/metabolismo , Actinina/metabolismo , Actinas/metabolismo , Envelhecimento/metabolismo , Animais , Adesão Celular , Diferenciação Celular , Drosophila melanogaster/enzimologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/ultraestrutura , Voo Animal , Técnicas de Silenciamento de Genes , Modelos Biológicos , Músculos/metabolismo , Músculos/patologia , Especificidade de Órgãos , Fenótipo , Sarcômeros/patologia , Sarcômeros/ultraestrutura , Talina/metabolismo , Fatores de Tempo
12.
Cell Tissue Res ; 339(1): 121-30, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19588168

RESUMO

The regulation of stem cell behavior and maintenance typically involves the integration of both intrinsic and extrinsic cues. One such external cue, integrin-mediated cell adhesion to the extracellular matrix, plays an important part in regulating stem cell function and maintenance. In particular, integrins help define and shape the microenvironment in which stem cells are found: the stem cell niche. Integrins have a diverse array of roles in this context including homing of stem cells to their niche, maintaining stem cells in the niche, developing stem-cell-niche architecture, regulating stem cell proliferation and self renewal, and finally, controlling the orientation of dividing stem cells. Because of their various roles in directing stem cell behavior, integrin-mediated adhesion and signaling in the niche have been implicated in processes that underlie cancer progression and metastasis.


Assuntos
Proliferação de Células , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Adesão Celular , Humanos , Metástase Neoplásica , Neoplasias/patologia , Células-Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA