Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
bioRxiv ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38712260

RESUMO

Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Although considerable attention has been paid to the mechanisms underlying synaptic strengthening and new learning, little scrutiny has been given to those involved in the attenuation of synaptic strength that attends suppression of a previously learned association. Our studies revealed a novel, non-Hebbian, long-term, postsynaptic depression of glutamatergic SPN synapses induced by interneuronal nitric oxide (NO) signaling (NO-LTD) that was preferentially engaged at quiescent synapses. This form of plasticity was gated by local Ca 2+ influx through CaV1.3 Ca 2+ channels and stimulation of phosphodiesterase 1 (PDE1), which degraded cyclic guanosine monophosphate (cGMP) and blunted NO signaling. Consistent with this model, mice harboring a gain-of-function mutation in the gene coding for the pore-forming subunit of CaV1.3 channels had elevated depolarization-induced dendritic Ca 2+ entry and impaired NO-LTD. Extracellular uncaging of glutamate and intracellular uncaging of cGMP suggested that this Ca 2+ -dependent regulation of PDE1 activity allowed for local regulation of dendritic NO signaling. This inference was supported by simulation of SPN dendritic integration, which revealed that dendritic spikes engaged PDE1 in a branch-specific manner. In a mouse model of Parkinson's disease (PD), NO-LTD was absent not because of a postsynaptic deficit in NO signaling machinery, but rather due to impaired interneuronal NO release. Re-balancing intrastriatal neuromodulatory signaling in the PD model restored NO release and NO-LTD. Taken together, these studies provide novel insights into the mechanisms governing NO-LTD in SPN and its role in psychomotor disorders, like PD.

2.
Angew Chem Int Ed Engl ; 63(13): e202315726, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38329885

RESUMO

We have developed a photochemical protecting group that enables wavelength selective uncaging using green versus violet light. Change of the exocyclic oxygen of the laser dye coumarin-102 to sulfur, gave thio-coumarin-102, a new chromophore with an absorption ratio at 503/402 nm of 37. Photolysis of thio-coumarin-102 caged γ-aminobutyric acid was found to be highly wavelength selective on neurons, with normalized electrical responses >100-fold higher in the green versus violet channel. When partnered with coumarin-102 caged glutamate, we could use whole cell violet and green irradiation to fire and block neuronal action potentials with complete orthogonality. Localized irradiation of different dendritic segments, each connected to a neuronal cell body, in concert with 3-dimenional Ca2+ imaging, revealed that such inputs could function independently. Chemical signaling in living cells always involves a complex balance of multiple pathways, use of (thio)-coumarin-102 caged compounds will enable arbitrarily timed flashes of green and violet light to interrogate two independent pathways simultaneously.


Assuntos
Luz Verde , Neurônios , Neurônios/metabolismo , Fotólise , Cumarínicos/química , Ácido Glutâmico/metabolismo
3.
Angew Chem Int Ed Engl ; 62(9): e202206083, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36646644

RESUMO

Light passes through biological tissue, and so it is used for imaging biological processes in situ. Such observation is part of the very essence of science, but mechanistic understanding requires intervention. For more than 50 years a "second function" for light has emerged; namely, that of photochemical control. Caged compounds are biologically inert signaling molecules that are activated by light. These optical probes enable external instruction of biological processes by stimulation of an individual element in complex signaling cascades in its native environment. Cause and effect are linked directly in spatial, temporal, and frequency domains in a quantitative manner by their use. I provide a guide to the basic properties required to make effective caged compounds for the biological sciences.


Assuntos
Biologia , Transdução de Sinais , Fotoquímica/métodos
4.
Neuron ; 110(15): 2438-2454.e8, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35700736

RESUMO

GluN3A is an atypical glycine-binding subunit of NMDA receptors (NMDARs) whose actions in the brain are mostly unknown. Here, we show that the expression of GluN3A subunits controls the excitability of mouse adult cortical and amygdalar circuits via an unusual signaling mechanism involving the formation of excitatory glycine GluN1/GluN3A receptors (eGlyRs) and their tonic activation by extracellular glycine. eGlyRs are mostly extrasynaptic and reside in specific neuronal populations, including the principal cells of the basolateral amygdala (BLA) and SST-positive interneurons (SST-INs) of the neocortex. In the BLA, tonic eGlyR currents are sensitive to fear-conditioning protocols, are subject to neuromodulation by the dopaminergic system, and control the stability of fear memories. In the neocortex, eGlyRs control the in vivo spiking of SST-INs and the behavior-dependent modulation of cortical activity. GluN3A-containing eGlyRs thus represent a novel and widespread signaling modality in the adult brain, with attributes that strikingly depart from those of conventional NMDARs.


Assuntos
Tonsila do Cerebelo , Neocórtex , Receptores de Glicina , Receptores de N-Metil-D-Aspartato , Tonsila do Cerebelo/metabolismo , Animais , Córtex Cerebral/metabolismo , Glicina/metabolismo , Interneurônios/metabolismo , Camundongos , Neocórtex/metabolismo , Neurônios/metabolismo , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Chem Commun (Camb) ; 58(17): 2826-2829, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35112125

RESUMO

Monitoring and manipulation of ionized intracellular calcium concentrations within intact, living cells using optical probes with organic chromophores is a core method for cell physiology. Since all these probes have multiple negative charges, they must be smuggled through the plasma membrane in a transiently neutral form, with intracellular esterases used to deprotect the masked anions. Here we explore the ability of the synthetically easily accessible n-butyl ester protecting group to deliver amphipathic cargoes to the cytosol. We show that the size of the caging chromophore conditions the ability of intracellular probe delivery and esterase charge unmasking.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Esterases/metabolismo , Corantes Fluorescentes/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio/química , Membrana Celular/química , Citosol/química , Esterases/química , Corantes Fluorescentes/química , Humanos , Estrutura Molecular , Miócitos Cardíacos/química , Tamanho da Partícula
6.
J Physiol ; 599(16): 3841-3852, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245001

RESUMO

KEY POINTS: In cardiac myocytes, subcellular local calcium release signals, calcium sparks, are recruited to form each cellular calcium transient and activate the contractile machinery. Abnormal timing of recovery of sparks after their termination may contribute to arrhythmias. We developed a method to interrogate recovery of calcium spark trigger probabilities and their amplitude over time using two-photon photolysis of a new ultra-effective caged calcium compound. The findings confirm the utility of the technique to define an elevated sensitivity of the calcium release mechanism in situ and to follow hastened recovery of spark trigger probabilities in a mouse model of an inherited cardiac arrhythmia, which was used for validation. Analogous methods are likely to be applicable to investigate other microscopic subcellular signalling systems in a variety of cell types. ABSTRACT: In cardiac myocytes Ca2+ -induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) through ryanodine receptors (RyRs) governs activation of contraction. Ca2+ release occurs via subcellular Ca2+ signalling events, Ca2+ sparks. Local recovery of Ca2+ release depends on both SR refilling and restoration of Ca2+ sensitivity of the RyRs. We used two-photon (2P) photolysis of the ultra-effective caged Ca2+ compound BIST-2EGTA and laser-scanning confocal Ca2+ imaging to probe refractoriness of local Ca2+ release in control conditions and in the presence of cAMP or low-dose caffeine (to stimulate CICR) or cyclopiazonic acid (CPA; to slow SR refilling). Permeabilized cardiomyocytes were loaded with BIST-2EGTA and rhod-2. Pairs of short 2P photolytic pulses (1 ms, 810 nm) were applied with different intervals to test Ca2+ release amplitude recovery and trigger probability for the second spark in a pair. Photolytic and biological events were distinguished by classification with a self-learning support vector machine (SVM) algorithm. In permeabilized myocytes data recorded in the presence of CPA showed a lower probability of triggering a second spark compared to control or cAMP conditions. Cardiomyocytes from a mouse model harbouring the arrhythmogenic RyRR420Q mutation were used for further validation and revealed a higher Ca2+ sensitivity of CICR. This new 2P approach provides composite information of Ca2+ release amplitude and trigger probability recovery reflecting both SR refilling and restoration of CICR and RyR Ca2+ sensitivity. It can be used to measure the kinetics of local CICR recovery, alterations of which may be related to premature heart beats and arrhythmias.


Assuntos
Cálcio , Retículo Sarcoplasmático , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Camundongos , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
7.
ChemPhotoChem ; 5(5): 445-454, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-36540756

RESUMO

Ifenprodil is an important negative allosteric modulator of the N-methyl-D-aspartate (NMDA) receptors. We have synthesized caged and photoswitchable derivatives of this small molecule drug. Caged ifenprodil was biologically inert before photolysis, UV irradiation efficiently released the drug allowing selective inhibition of GluN2B-containing NMDA receptors. Azobenzene-modified ifenprodil, on the other hand, is inert in both its trans and cis configurations, although in silico modeling predicted the trans form to be able to bind to the receptor. The disparity in effectiveness between the two compounds reflects, in part, the inherent ability of each method in manipulating the binding properties of drugs. With appropriate structure-activity relationship uncaging enables binary control of effector binding, whereas photoswitching using feely diffusable chromophores shifts the dose-response curve of drug-receptor interaction. Our data suggest that the efficacy of pharmacophores having a confined binding site such as ifenprodil can be controlled more easily by uncaging in comparison to photoswitching.

8.
Chem Commun (Camb) ; 56(66): 9445-9448, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32761019

RESUMO

Photoswitchable drugs are small-molecule optical probes that undergo chromatically selective control of drug efficacy using, most often, UV-visible light. Here we report that luminescence produced by near-infrared stimulation of NaYF4:TmYb nanoparticles can be used for "remote control" of an azobenzene-based photochromic ion channel blocker of neurons in living brain slices.


Assuntos
Luz , Nanopartículas Metálicas/química , Raios Ultravioleta , Animais , Compostos Azo/química , Corantes Fluorescentes/química , Fluoretos/química , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Isomerismo , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Térbio/química , Túlio/química , Ítrio/química
9.
Acc Chem Res ; 53(8): 1593-1604, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32692149

RESUMO

Light has been instrumental in the study of living cells since its use helped in their discovery in the late 17th century. Further, combining chemical technology with light microscopy was an essential part of the Nobel Prize for Physiology in 1906. Such landmark scientific findings involved passive observation of cells. However, over the past 50 years, a "second use" of light has emerged in cell physiology, namely one of rational control. The seminal method for this emerged in late 1970s with the invention of caged compounds. This was the point when "caged compounds" were defined as optical probes in which the active functionality of a physiological signaling molecule was blocked with a photochemical protecting group. Caged compounds are analogous to prodrugs; in both, the activity of the effector is latent. However, caged compounds, unlike prodrugs, use a trigger that confers the power of full temporal and spatial manipulation of the effects of release of its latent biological cargo. Light is distinct because it is bio-orthogonal, passes through living tissue (even into the cell interior), and initiates rapid release of the "caged" biomolecule. Further, because light can be directed to broad areas or focused to small points, caged compounds offer an array of timing scenarios for physiologists to dissect virtually any type of cellular process.The collaborative interaction between chemists and physiologists plays a fundamental role in the development of caged compounds. First, the physiologists must define the problem to be addressed; then, with the help of chemists, decide if a caged compound would be useful. For this, structure-activity relationships of the potential optical probe and receptor must be determined. If rational targets seem feasible, synthetic organic chemistry is used to make the caged compound. The crucial property of prephotolysis bio-inertness relies on physiological or biochemical assays. Second, detailed optical characterization of the caged compound requires the skill of photochemists because the rate and efficiency of uncaging are also crucial properties for a useful caged compound. Often, these studies reveal limitations in the caged compound which has been developed; thus, chemists and physiologists use their abilities for iterative development of even more powerful optical probes. A similar dynamic will be familiar to scientists in the pharmaceutical industry. Therefore, caged compound development provides an excellent training framework for (young) chemists both intellectually and professionally. In this Account, I draw on my long experience in the field of making useful caged compounds for cell physiology by showing how each probe I have developed has been defined by an important physiological problem. Fundamental to this process has been my initial training by the pioneers in aromatic photochemistry, Derek Bryce-Smith and Andrew Gilbert. I discuss making a range of "caged calcium" probes, ones which went on to be the most widely used of all caged compounds. Then, I describe the development of caged neurotransmitters for two-photon uncaging microscopy. Finally, I survey recent work on making new photochemical protecting groups for wavelength orthogonal, two-color, and ultraefficient two-photon uncaging.


Assuntos
Quelantes/química , Neurônios/fisiologia , Acetatos/química , Potenciais de Ação , Animais , Cálcio/química , Ácido Egtázico/análogos & derivados , Ácido Egtázico/química , Etilenodiaminas/química , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurotransmissores/química , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
10.
Proc Natl Acad Sci U S A ; 117(12): 6831-6835, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152102

RESUMO

Glutamate is the major excitatory neurotransmitter in the brain, and photochemical release of glutamate (or uncaging) is a chemical technique widely used by biologists to interrogate its physiology. A basic prerequisite of these optical probes is bio-inertness before photolysis. However, all caged glutamates are known to have strong antagonism toward receptors of γ-aminobutyric acid, the major inhibitory transmitter. We have developed a caged glutamate probe that is inert toward these receptors at concentrations that are effective for photolysis with violet light. Pharmacological tests in vitro revealed that attachment of a fifth-generation (G5) dendrimer (i.e., cloaking) to the widely used 4-methoxy-7-nitro-indolinyl(MNI)-Glu probe prevented such off-target effects while not changing the photochemical properties of MNI-Glu significantly. G5-MNI-Glu was used with optofluidic delivery to stimulate dopamine neurons of the ventral tegmental area of freely moving mice in a conditioned place-preference protocol so as to mediate Pavlovian conditioning.


Assuntos
Glutamatos/farmacologia , Indóis/farmacologia , Aprendizagem/fisiologia , Microfluídica , Neurônios/fisiologia , Neurotransmissores/farmacologia , Animais , Aprendizagem/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neuroquímica , Neurônios/efeitos dos fármacos , Fotoquímica , Fotólise , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
11.
Beilstein J Org Chem ; 15: 2812-2821, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807216

RESUMO

We have developed photochromic probes for the nicotinic acetylcholine receptor that exploit the unique chemical properties of the tetrafluoroazobenzene (4FAB) scaffold. Ultraviolet light switching and rapid thermal relaxation of the metastable cis configuration are the main drawbacks associated with standard AB-based switches. We designed our photoprobes to take advantage of the excellent thermodynamic stability of the cis-4FAB configuration (thermal half-life > 12 days at 37 °C in physiological buffer) and cis-trans photostationary states above 84%. Furthermore, the well-separated n-π* absorption bands of trans- and cis-4FAB allow facile photoswitching with visible light in two optical channels. A convergent 11-step synthetic approach allowed the installation of a trimethylammonium (TA) head onto the 4FAB scaffold, by means of an alkyl spacer, to afford a free diffusible 4FABTA probe. TAs are known to agonize nicotinic receptors, so 4FABTA was tested on mouse brain slices and enabled reversible receptor activation with cycles of violet and green light. Due to the very long-lived metastable cis configuration, 4FAB in vivo use could be of great promise for long term biological studies. Further chemical functionalization of this 4FAB probe with a maleimide functionality allowed clean cross-linking with glutathione. However, attempts to conjugate with a cysteine on a genetically modified nicotinic acetylcholine receptor did not afford the expected light-responsive channel. Our data indicate that the 4FAB photoswitch can be derivatized bifunctionally for genetically-targeted photopharmacology whilst preserving all the favorable photophysical properties of the parent 4FAB scaffold, however, the tetrafluoro motif can significantly perturb pharmacophore-protein interactions. In contrast, we found that the freely diffusible 4FABTA probe could be pre-set with green light into an OFF state that was biologically inert, irradiation with violet light effectively "uncaged" agonist activity, but in a photoreversible manner. Since the neurotransmitter acetylcholine has fully saturated heteroatom valences, our photoswitchable 4FABTA probe could be useful for physiological studies of this neurotransmitter.

12.
Methods Enzymol ; 624: 167-196, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31370929

RESUMO

Caged compounds enable fast, light-induced, and spatially-defined application of bioactive molecules to cells. Covalent attachment of a caging chromophore to a crucial functionality of a biomolecule renders it inert, while short pulses of light release the caged molecule in its active form. Caged neurotransmitters have been widely used to study diverse neurobiological processes such as receptor distribution, synaptogenesis, transport, and long-term potentiation. Since the neurotransmitters glutamate and gamma-aminobutyric acid (GABA) are the most important, they have been studied extensively using uncaging. However, to be able to probe their interactions on a physiologically relevant timescale, fast and independent application of both neurotransmitters in an arbitrary order is desired. This can be achieved by combining two caging chromophores absorbing non-overlapping and thus orthogonal wavelengths of light, which enables the precise application of two caged molecules to the same preparation in any order, a technique called two-color uncaging. In this chapter, we describe the principles of orthogonal two-color uncaging with one- and two-photon excitation with an emphasis on caged glutamate and GABA. We then give a guide to its practical application and highlight some key studies utilizing this technique.


Assuntos
Ácido Glutâmico/química , Neurotransmissores/química , Ácido gama-Aminobutírico/química , Animais , Química Encefálica , Liofilização , Luz , Camundongos , Fótons
13.
Nat Rev Neurosci ; 20(9): 514-532, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289380

RESUMO

Light-controllable tools provide powerful means to manipulate and interrogate brain function with relatively low invasiveness and high spatiotemporal precision. Although optogenetic approaches permit neuronal excitation or inhibition at the network level, other technologies, such as optopharmacology (also known as photopharmacology) have emerged that provide molecular-level control by endowing light sensitivity to endogenous biomolecules. In this Review, we discuss the challenges and opportunities of photocontrolling native neuronal signalling pathways, focusing on ion channels and neurotransmitter receptors. We describe existing strategies for rendering receptors and channels light sensitive and provide an overview of the neuroscientific insights gained from such approaches. At the crossroads of chemistry, protein engineering and neuroscience, optopharmacology offers great potential for understanding the molecular basis of brain function and behaviour, with promises for future therapeutics.


Assuntos
Canais Iônicos/metabolismo , Neurônios/metabolismo , Optogenética/tendências , Processos Fotoquímicos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/química , Moduladores de Transporte de Membrana/farmacologia , Neurônios/química , Neurônios/efeitos dos fármacos , Optogenética/métodos , Processos Fotoquímicos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/química
14.
Angew Chem Int Ed Engl ; 58(35): 12086-12090, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31216109

RESUMO

We have developed a caged neurotransmitter using an extended π-electron chromophore for efficient multiphoton uncaging on living neurons. Widely studied in a chemical context, such chromophores are inherently bioincompatible due to their highly lipophilic character. Attachment of two polycarboxylate dendrimers, a method we call "cloaking", to a bisstyrylthiophene (or BIST) core effectively transformed the chromophore into a water-soluble optical probe, whilst maintaining the high two-photon absorption of over 500 GM. Importantly, the cloaked caged compound was biologically inert at the high concentrations required for multiphoton chemical physiology. Thus, in contrast to non-cloaked BIST compounds, the BIST-caged neurotransmitter can be safely delivered onto neurons in acutely isolated brain slices, thereby enabling high-resolution two-photon uncaging without any side effects. We expect that our cloaking method will enable the development of new classes of cell-compatible photolabile probes using a wide variety of extended π-electron caging chromophores.


Assuntos
Dendrímeros/química , Animais , Dendrímeros/metabolismo , Elétrons , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Neurônios/metabolismo , Neurotransmissores/química , Neurotransmissores/metabolismo , Fótons , Tiofenos/química , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/metabolismo
15.
ACS Chem Neurosci ; 10(5): 2481-2488, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30767510

RESUMO

Azobenzenes are the most widely studied photoswitches, and have become popular optical probes for biological systems. The cis configuration is normally metastable, meaning the trans configuration is always thermodynamically favored. The unique exception to this rule is an azobenzene having a two-carbon bridge between ortho positions, substitutions that lock the photoswitch in its cis configuration. Only thoroughly chemically characterized relatively recently, we describe the first applications of this locked-azobenzene (or "LAB") scaffold with two derivatives designed to control ion flow in pyramidal neurons in acutely isolated brain slices. Our LAB derivatives maintain most of the desirable photochemical properties of the parent scaffold, and work as designed in living cells. However, LAB derivitization changes the trans photostationary state from >85% of the parent photoswitch to about 50%, suggesting that careful design considerations must be given for future applications of the LAB scaffold in biological areas.


Assuntos
Compostos Azo/farmacologia , Fenômenos Fisiológicos Celulares/fisiologia , Processos Fotoquímicos , Fármacos Fotossensibilizantes/farmacologia , Animais , Glutamatos/metabolismo , Camundongos , Neurônios/fisiologia , Canais de Potássio/agonistas , Canais de Potássio/efeitos dos fármacos
16.
J Physiol ; 596(22): 5307-5318, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30222192

RESUMO

KEY POINTS: A new caged nicotinic acetylcholine receptor (nAChR) agonist was developed, ABT594, which is photolysed by one- and two-photon excitation. The caged compound is photolysed with a quantum yield of 0.20. One-photon uncaging of ABT594 elicited large currents and Ca2+ transients at the soma and dendrites of medial habenula (MHb) neurons of mouse brain slices. Unexpectedly, uncaging of ABT594 also revealed highly Ca2+ -permeable nAChRs on axons of MHb neurons. ABSTRACT: Photochemical release of neurotransmitters has been instrumental in the study of their underlying receptors, with acetylcholine being the exception due to its inaccessibility to photochemical protection. We caged a nicotinic acetylcholine receptor (nAChR) agonist, ABT594, via its secondary amine functionality. Effective photolysis could be carried out using either one- or two-photon excitation. Brief flashes (0.5-3.0 ms) of 410 nm light evoked large currents and Ca2+ transients on cell bodies and dendrites of medial habenula (MHb) neurons. Unexpectedly, photorelease of ABT594 also revealed nAChR-mediated Ca2+ signals along the axons of MHb neurons.


Assuntos
Azetidinas/farmacologia , Habenula/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Piridinas/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Habenula/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Neurônios/fisiologia , Nicotina/farmacologia
17.
Angew Chem Int Ed Engl ; 57(38): 12554-12557, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30075062

RESUMO

Photoswitchable bioprobes enable bidirectional control of cell physiology with different wavelengths of light. Many current photoswitches use cytotoxic UV light and are limited by the need for constant illumination owing to thermal relaxation in the dark. Now a photoswitchable tetrafluoroazobenzene(4FAB)-based ion channel antagonist has been developed that can be efficiently isomerized in two separate optical channels with visible light. Importantly, the metastable cis configuration showed very high stability in the dark over the course of days at room temperature. In neurons, the 4FAB antagonist reversibly blocks voltage-gated ion channels with violet and green light. Furthermore, photoswitching could also be achieved with two-photon excitation yielding high spatial resolution. 4FAB probes have the potential to enable long-term biological studies where both ON and OFF states can be maintained in the absence of irradiation.


Assuntos
Canais Iônicos/metabolismo , Luz , Neurônios/metabolismo , Animais , Compostos Azo/química , Feminino , Canais Iônicos/antagonistas & inibidores , Isomerismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Fótons , Termodinâmica
18.
Chem Commun (Camb) ; 54(39): 4983-4986, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29707710

RESUMO

We have developed 7-diethylaminocoumarin-based chromophores that photoisomerize with visible light. These photoswitches possess many desirable attributes, including large extinction coefficients (18 600-59 100 M-1 cm-1), high quantum yields (0.45-0.50) and resistance to photofatigue. Additionally, time-resolved spectroscopy indicates that both isomerization reactions are complete in less than 1 ns.

19.
J Neurosci Methods ; 293: 321-328, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29051090

RESUMO

BACKGROUND: The light-induced release of neurotransmitters from caging chromophores provides a powerful means to study the underlying receptors in a physiologically relevant context. Surprisingly, most caged neurotransmitters, including the widely used 4-methoxy-7-nitroindolinyl (MNI)-glutamate, show strong antagonism against GABA-A receptors. Kainate has been shown to exhibit a higher efficacy at glutamate receptors compared to glutamate itself. Thus, uncaging of kainate might allow the application of the caged compound at lower, less antagonistic concentrations. NEW METHODS: This study provides a detailed comparison of MNI-glutamate and MNI-kainate uncaging by different modes of one- and two-photon irradiation on hippocampal CA1 pyramidal neurons in acute brain slices. RESULTS/COMPARISON WITH EXISTING METHODS: Unexpectedly, the data revealed that currents in response to MNI-glutamate uncaging were larger compared to MNI-kainate with local one-photon laser uncaging at the soma and two-photon uncaging at the same spines. Furthermore, the direct comparison demonstrates the influence of type of caged agonist and light delivery conditions used for uncaging on the amplitude and kinetic properties of the current response. CONCLUSION: These findings highlight the importance of experimental design for uncaging experiments and provide a basis for future studies employing one- and two-photon uncaging to understand glutamate-dependent processes. It further provides the first example of two-photon uncaging of kainate at single spines in acute brain slices.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Glutamatos/farmacologia , Indóis/farmacologia , Ácido Caínico/farmacologia , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Animais , Região CA1 Hipocampal/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Feminino , Técnicas In Vitro , Lasers , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Estimulação Luminosa/instrumentação , Células Piramidais/metabolismo , Técnicas de Cultura de Tecidos
20.
Artigo em Inglês | MEDLINE | ID: mdl-30687075

RESUMO

Two-photon microscopy produces the excited singlet state of a chromophore with wavelengths approximately double that used for normal excitation. Two photons are absorbed almost simultaneously, via a virtual state, and this makes the excitation technique inherently non-linear. It requires ultra-fast lasers to deliver the high flux density needed to access intrinsically very short lived intermediates, and in combination with lenses of high numerical aperture, this confines axial excitation highly. Since the two-photon excitation volume is similar to a large spine head, the technique has been widely used to study glutamatergic transmission in brain slices. Here I describe the principles of two-photon uncaging of glutamate and provide a practical guide to its application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA