Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ecol Evol ; 13(4): e9993, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37082321

RESUMO

Conversion of the North American prairies to cropland remains a prominent threat to grassland bird populations. Yet, a few species nest in these vastly modified systems. Thick-billed longspurs historically nested in recently disturbed or sparsely vegetated patches within native mixed-grass prairie, but observations of longspurs in spring cereal and pulse crop fields during the breeding season in northeastern Montana, USA, suggest such fields also provide cues for habitat selection. Maladaptive selection for poor-quality habitat may contribute to ongoing declines in longspur populations, but information on thick-billed longspur breeding ecology in crop fields is lacking. We hypothesized that crop fields may function as ecological traps; specifically, we expected that crop fields may provide cues for territory selection, but frequent human disturbance would result in reduced reproduction. To address this hypothesis, we compared measures of habitat selection (settlement patterns and trends in abundance) and productivity (nest density, nest survival, and number of young fledged) between crop fields and native grassland sites during 2020-2021. Across both years, settlement patterns were similar between site types and occupancy ranged from 0.52 ± 0.17 SE to 0.99 ± 0.01 on April 7 and 30, respectively. Early season abundance differed by year, and changes in abundance during the breeding season appeared to be associated with precipitation-driven vegetation conditions rather than habitat type. While an index of nest density was lower in crop than native sites, the number of young fledged per successful nest (2.9 ± 0.18 SE) and nest survival (0.24 ± 0.03 SE; n = 222 nests) were similar for crop and native sites. Collectively, the data did not support our ecological trap hypothesis: longspurs did not exhibit a clear preference for crop sites and reproductive output was not significantly reduced. Our results indicate that croplands may provide alternative breeding habitat within a human-dominated landscape.

2.
Environ Manage ; 71(2): 393-404, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459195

RESUMO

Oil extraction may impact wildlife by altering habitat suitability and affecting stress levels and behavior of individuals, but it can be challenging to disentangle the impacts of infrastructure itself on wildlife from associated noise and human activity at well sites. We evaluated whether the demographic distribution and corticosterone levels of three grassland passerine species (Chestnut-collared Longspur, Calcarius ornatus; Baird's Sparrow, Centronyx bairdii; and Savannah Sparrow Passerculus sandwichensis) were impacted by oil development in southern Alberta, Canada. We used a landscape-scale oil well noise-playback experiment to evaluate whether impacts of wells were caused by noise. Surprisingly, higher-quality female Chestnut-collared Longspurs tended to nest closer to oil wells, while higher-quality Savannah Sparrows generally avoided nesting sites impacted by oil wells. Corticosterone levels in all species varied with the presence of oil development (oil wells, noise, or roads), but the magnitude and direction of the response was species and stimulus specific. While we detected numerous impacts of physical infrastructure on stress physiology and spatial demographic patterns, few of these resulted from noise. However, all three species in this study responded to at least one disturbance associated with oil development, so to conserve the grassland songbird community, both the presence of physical infrastructure and anthropogenic noise should be mitigated.


Assuntos
Aves Canoras , Animais , Feminino , Humanos , Aves Canoras/fisiologia , Pradaria , Corticosterona , Ecossistema , Alberta , Comportamento de Nidação/fisiologia
3.
Ecol Evol ; 11(11): 6913-6926, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141265

RESUMO

Although it is common for nestlings to exhibit a strong bias for fledging in the morning, the mechanisms underlying this behavior are not well understood. Avoiding predation risk has been proposed as a likely mechanism by a number of researchers. We used video surveillance records from studies of grassland birds nesting in North Dakota, Minnesota, and Wisconsin to determine the diel pattern of nest predation and fledging patterns of four ground-nesting obligate grassland passerines (Grasshopper Sparrow (Ammodramus savannarum), Savannah Sparrow (Passerculus sandwichensis), Bobolink (Dolichonyx oryzivorus), and Eastern Meadowlark (Sturnella magna)). We used the nest predation pattern as a surrogate for predation activity to test whether nestlings minimized predation risk by avoiding fledging when predation activity was high and preferentially fledging when predation risk was low. Predation activity was significantly lower starting 3 hr before sunrise and ending 3 hr after sunrise, followed by a transition to a period of significantly higher activity lasting for 4 hr, before declining to an average activity level for the rest of the diel period. There was little evidence that the four grassland bird species avoided fledging during the high-risk period and Savannah Sparrow fledged at higher rates during that period. All four species had hours during the low-risk period where they fledged at higher rates, but only Grasshopper Sparrow fledged preferentially during that period. Bobolink and Eastern Meadowlark had multiple hours with high fledging rates throughout the daytime period, resulting in no relationship between probability of fledging and predation risk. Given the species variability in fledging pattern seen in our study, it is unlikely that there is a universal response to any driver that affects time of fledging. Further study is needed to understand the complex interplay between species ecology and drivers such as physiology, energetics, and predation in affecting grassland bird fledging behavior.

4.
Access Microbiol ; 3(1): acmi000179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997610

RESUMO

The human gut microbiome includes beneficial, commensal and pathogenic bacteria that possess antimicrobial resistance (AMR) genes and exchange these predominantly through conjugative plasmids. Escherichia coli is a significant component of the gastrointestinal microbiome and is typically non-pathogenic in this niche. In contrast, extra-intestinal pathogenic E. coli (ExPEC) including ST131 may occupy other environments like the urinary tract or bloodstream where they express genes enabling AMR and host cell adhesion like type 1 fimbriae. The extent to which commensal E. coli and uropathogenic ExPEC ST131 share AMR genes remains understudied at a genomic level, and we examined this here using a preterm infant resistome. We found that individual ST131 had small differences in AMR gene content relative to a larger shared resistome. Comparisons with a range of plasmids common in ST131 showed that AMR gene composition was driven by conjugation, recombination and mobile genetic elements. Plasmid pEK499 had extended regions in most ST131 Clade C isolates, and it had evidence of a co-evolutionary signal based on protein-level interactions with chromosomal gene products, as did pEK204 that had a type IV fimbrial pil operon. ST131 possessed extensive diversity of selective type 1, type IV, P and F17-like fimbriae genes that was highest in subclade C2. The structure and composition of AMR genes, plasmids and fimbriae vary widely in ST131 Clade C and this may mediate pathogenicity and infection outcomes.

5.
J Wildl Dis ; 50(4): 810-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25121409

RESUMO

Globally, Avipoxvirus species affect over 230 species of wild birds and can significantly impair survival. During banding of nine grassland songbird species (n=346 individuals) in southwestern Wisconsin, USA, we noted species with a 2-6% prevalence of pox-like lesions (possible evidence of current infection) and 4-10% missing digits (potential evidence of past infection). These prevalences approach those recorded among island endemic birds (4-9% and 9-20% for the Galapagos and Hawaii, respectively) for which Avipoxvirus species have been implicated as contributing to dramatic population declines. Henslow's Sparrow Ammodramus henslowii (n=165 individuals) had the highest prevalence of lesions (6.1%) and missing digits (9.7%). Among a subset of 26 Henslow's Sparrows from which blood samples were obtained, none had detectable antibody reactive to fowlpox virus antigen. However, four samples (18%) had antibody to canarypox virus antigen with test sample and negative control ratios (P/N values) ranging from 2.4 to 6.5 (median 4.3). Of four antibody-positive birds, two had lesions recorded (one was also missing a digit), one had digits missing, and one had no signs. Additionally, the birds with lesions or missing digits had higher P/N values than did the antibody-positive bird without missing digits or recorded lesions. This study represents an impetus for considering the impacts and dynamics of disease caused by Avipoxvirus among North American grassland bird species.


Assuntos
Migração Animal , Doenças das Aves/patologia , Infecções por Poxviridae/veterinária , Poxviridae/imunologia , Pardais , Animais , Anticorpos Antivirais/sangue , Doenças das Aves/epidemiologia , Ecossistema , Passeriformes/imunologia , Passeriformes/virologia , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/patologia , Prevalência , Especificidade da Espécie , Wisconsin/epidemiologia
6.
Conserv Biol ; 28(1): 4-12, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24400726

RESUMO

Public agencies sometimes seek outside guidance when capacity to achieve their mission is limited. Through a cooperative agreement and collaborations with the U.S. National Park Service (NPS), we developed recommendations for a conservation program for migratory species. Although NPS manages ∼ 36 million hectares of land and water in 401 units, there is no centralized program to conserve wild animals reliant on NPS units that also migrate hundreds to thousands of kilometers beyond parks. Migrations are imperiled by habitat destruction, unsustainable harvest, climate change, and other impediments. A successful program to counter these challenges requires public support, national and international outreach, and flourishing migrant populations. We recommended two initial steps. First, in the short term, launch or build on a suite of projects for high-profile migratory species that can serve as proof to demonstrate the centrality of NPS units to conservation at different scales. Second, over the longer term, build new capacity to conserve migratory species. Capacity building will entail increasing the limited knowledge among park staff about how and where species or populations migrate, conditions that enable migration, and identifying species' needs and resolving them both within and beyond parks. Building capacity will also require ensuring that park superintendents and staff at all levels support conservation beyond statutory borders. Until additional diverse stakeholders and a broader American public realize what can be lost and do more to protect it and engage more with land management agencies to implement actions that facilitate conservation, long distance migrations are increasingly likely to become phenomena of the past.


Assuntos
Migração Animal , Biodiversidade , Conservação dos Recursos Naturais , Política Ambiental , Animais , Estados Unidos
7.
PLoS One ; 8(4): e59151, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565144

RESUMO

Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow's sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus]) at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2-4 times for bobolink and Henslow's sparrow) and nesting densities increased (all 3 species) in the removal areas compared to control areas. After removals, Henslow's sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor]) at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]). Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116) and the number of successful nests for bobolinks and Henslow's sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland ecosystems.


Assuntos
Aves , Ecossistema , Comportamento de Nidação , Poaceae , Comportamento Predatório , Árvores , Animais , Feminino , Masculino , Densidade Demográfica , Wisconsin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA