Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Org Lett ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39332014

RESUMO

A two-step, diversity-building sequence to prepare monodehydro-diketopiperazines from readily accessible materials is reported. Rh(III)-catalyzed, amine-directed N-H functionalization of a variety of α-amino amides with a diazophosphonate ester and subsequent cyclization gives phosphonate-substituted diketopiperazines. A Horner-Wadsworth-Emmons reaction then provides monodehydro-diketopiperazines with high E-alkene selectivity. This transformation was used to incorporate a variety of groups originating from diverse aldehydes and ketones with different steric and electronic properties. Face-selective hydrogenation to diketopiperazines is also disclosed.

2.
ACS Chem Biol ; 19(9): 2081-2086, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39192734

RESUMO

We report the development of Tether-seq, a transcriptome-wide screen to probe RNA-small molecule interactions using disulfide tethering. This technique uses s4U metabolic labeling to provide sites for reversible and covalent attachment of small molecule disulfides to the transcriptome. By screening under reducing conditions, we identify interactions that are stabilized by binding over those driven by the reactivity of the RNA sites. When applied to cellular RNA, Tether-seq with a disulfide analogue of risdiplam, an FDA-approved drug that targets RNA to treat spinal muscular atrophy (SMA), revealed a number of potential binding sites, most prominently at a site within the cytochrome C oxidase 1 (COX1) transcript. Structure probing by SHAPE-MaP revealed a structured motif and confirmed binding to the lead molecule. This work demonstrates that these screens have the power to identify binding sites throughout the transcriptome and provide invaluable insight into the thermodynamic properties that define small molecule binding.


Assuntos
Dissulfetos , Transcriptoma , Sítios de Ligação , Dissulfetos/química , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , RNA/metabolismo , RNA/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química
3.
Org Lett ; 26(29): 6295-6300, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39004842

RESUMO

The Rh(II)-catalyzed enantioselective S-alkylation of sulfenamides with α-amide diazoacetates at 1 mol % catalyst loading to obtain sulfilimines in high yields and enantiomeric ratios of up to 99:1 is reported. The enantioenriched sulfilimine products incorporate versatile amide functionality poised for further elaboration to diverse sulfoximines with multiple stereogenic centers, including by highly diastereoselective sulfilimine and sulfoximine α-alkylation with alkylating agents and epoxides and by interconversion of the amide to N-tert-butanesulfinyl aldimines, followed by diastereoselective additions.

4.
Angew Chem Int Ed Engl ; 63(42): e202408820, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39058627

RESUMO

A general phase-transfer catalyst (PTC) mediated enantioselective alkylation of N-acylsulfenamides is reported. Essential to achieving high selectivity was the use of the triethylacetyl sulfenamide protecting group along with aqueous KOH as the base under biphasic aqueous conditions to enable the reaction to be performed at -40 °C. With these key parameters, enantiomeric ratios up to 97.5 : 2.5 at the newly generated chiral sulfur center were achieved with an inexpensive cinchona alkaloid derived PTC. Broad scope and excellent functional group compatibility was observed for a variety of S-(hetero)aryl and branched and unbranched S-alkyl sulfenamides. Moreover, to achieve high selectivity for the opposite enantiomer, a pseudoenantiomeric catalyst was designed and synthesized from inexpensive cinchonidine. Given that sulfoximines are a bioactive pharmacophore of ever-increasing interest, selected product sulfilimines were oxidized to the corresponding sulfoximines with subsequent reductive cleavage affording the free-NH sulfoximines in high yields. The utility of the disclosed method was further demonstrated by the efficient asymmetric synthesis of atuveciclib, a phase I clinical candidate for which only chiral HPLC separation had previously been reported for isolation of the desired (R)-sulfoximine stereoisomer.

5.
Org Lett ; 26(22): 4803-4807, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38810982

RESUMO

Unprotected, highly substituted morpholines were obtained through a copper-catalyzed three-component reaction utilizing amino alcohols, aldehydes, and diazomalonates. The transformation was effective for diversely substituted aldehydes and for a broad range of readily available vicinal amino alcohols, including those derived from glycine, α-substituted, and α,α-disubstituted amino acids. Epimerization of morpholines using light-mediated stereochemical editing was demonstrated, and the unprotected morpholine products were readily elaborated through efficient transformations.

7.
Angew Chem Int Ed Engl ; 63(3): e202315701, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38015869

RESUMO

A general one-pot approach to diverse N-acylsulfenamides from a common S-phenethylsulfenamide starting material is reported. This approach was demonstrated by C-S bond formation utilizing commercially abundant (hetero)aryl iodides and boronic acids to provide sulfilimine intermediates that undergo thermal elimination of styrene. In contrast, all prior approaches to N-acylsulfenamides rely on thiol inputs to introduce sulfenamide S-substituents. A broad scope of reaction inputs was demonstrated including for approved drugs and drug precursors with dense display of functionality. Several different types of sulfur functionalization were performed on a sulfenamide derived from a complex precursor of the blockbuster anticoagulant drug apixaban, highlighting the utility of this approach for the introduction of high oxidation state sulfur groups in complex bioactive compounds. Mechanistic studies established that the key styrene elimination step proceeds by a concerted elimination that does not require reagents or catalysts, and therefore, this one-pot approach should be applicable to the synthesis of N-acylsulfenamides utilizing diverse electrophiles and reaction conditions for C-S bond formation.

8.
Org Lett ; 25(51): 9197-9201, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38114418

RESUMO

Stereoselective α-amino C-H epimerization of exocyclic amines is achieved via photoredox catalyzed, thiyl-radical mediated, reversible hydrogen atom transfer to provide thermodynamically controlled anti/syn isomer ratios. The method is applicable to different substituents and substitution patterns about aminocyclopentanes, aminocyclohexanes, and a N-Boc-3-aminopiperidine. The method also provided efficient epimerization for primary, alkyl and (hetero)aryl secondary, and tertiary exocyclic amines. Demonstration of reversible epimerization, deuterium labeling, and luminescence quenching provides insight into the reaction mechanism.

9.
Synthesis (Stuttg) ; 55(15): 2353-2360, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37457378

RESUMO

Herein is reported a robust and general method for the preparation of N-acylsulfenamides, important functionalities that have recently been utilized as central inputs for the asymmetric synthesis of high oxidation state sulfur compounds. This straightforward transformation proceeds by reaction of primary amides, carbamates, sulfonamides, sulfinamides, and ureas with stable N-thiosuccinimides or N-thiophthalimides, which in turn are prepared in a single step from commercial thiols. The use of stable N-thiosuccinimide and N-thiophthalimide reactants is desirable because it obviates the use of highly reactive sulfenyl chlorides.

10.
Org Lett ; 25(25): 4759-4764, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37338140

RESUMO

Sulfur-(hetero)arylation of sulfenamides with commercially abundant (hetero)aryl iodides by Ullmann-type coupling with inexpensive copper(I) iodide as the catalyst is reported. A broad scope of reaction inputs was demonstrated, including both aryl and alkyl sulfenamides and highly sterically hindered aryl and 5- and 6-membered ring heteroaryl iodides. Relevant to many bioactive high oxidation state sulfur compounds, the (hetero)arylation of S-methyl sulfenamides is reported, including for complex aryl iodides. Smiles rearrangement of electron-deficient S-heteroaryl sulfilimines is also disclosed.


Assuntos
Iodetos , Sulfamerazina , Enxofre , Compostos de Enxofre , Catálise
11.
Org Lett ; 25(20): 3654-3658, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37172224

RESUMO

Unprotected, α,ß-disubstituted tryptamines and phenethylamines are obtained by a one-pot, metal-free sequence that proceeds by the in situ formation of aziridinium salts followed by Friedel-Crafts reaction with electron-rich (hetero)arenes. Both steps are facilitated by hexafluoroisopropanol as the solvent. The one-pot sequence was effective for diversely substituted indoles and 1,3,5-trimethoxybenzene, for cyclic and acyclic alkenes, and proceeded in a stereospecific fashion for both (E)- and (Z)-1,2-disubstituted alkenes. Moreover, one-pot morpholine addition to an aziridinium salt provided a diamine.

12.
J Org Chem ; 88(11): 7607-7614, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37221855

RESUMO

Sulfur alkylation of N-acyl sulfenamides with alkyl halides provides sulfilimines in 47% to 98% yields. A broad scope was established with a variety of aryl and alkyl sulfenamides, including for different N-acyl groups. Alkyl halides with different steric and electronic properties were effective inputs, including methyl, primary, secondary, benzyl, and propargyl halides. A proof-of-concept asymmetric phase-transfer alkylation was also demonstrated. A sulfilimine product was readily converted to an N-acyl and to a free sulfoximine, which represent important motifs in medicinal chemistry.

13.
Org Lett ; 25(16): 2830-2834, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37042652

RESUMO

Sulfur-arylation of sulfenamides is reported. This reaction proceeds via a Chan-Lam-type coupling with commercially abundant boronic acids to give sulfilimines. A broad scope was established with a variety of readily accessible aryl and alkyl sulfenamide and boronic acid inputs. Synthetic utility and functional group compatibility were further demonstrated through the direct late-stage introduction of sulfilimines into approved drugs. Derivatization of the sulfilimine products provided access to medicinally relevant sulfoximines and sulfondiimines.

14.
Angew Chem Int Ed Engl ; 62(1): e202210822, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36331194

RESUMO

A multicomponent annulation that proceeds by imine directed Cp*RhIII -catalyzed N-H functionalization is disclosed. The transformation affords piperazinones displaying a range of functionality and is the first example of transition metal-catalyzed multicomponent N-H functionalization. A broad range of readily available α-amino amides, including those derived from glycine, α-substituted, and α,α-disubstituted amino acids, were effective inputs and enabled the incorporation of a variety of amino acid side chains with minimal racemization. Branched and unbranched alkyl aldehydes and various stabilized diazo compounds were also efficient reactants. The piperazinone products were further modified through efficient transformations. Mechanistic studies, including X-ray crystallographic characterization of a catalytically competent five-membered rhodacycle with imine and amide nitrogen chelation, provide support for the proposed mechanism.


Assuntos
Aldeídos , Ródio , Aldeídos/química , Amidas , Iminas , Ródio/química , Catálise , Compostos Azo
15.
Chem Sci ; 13(48): 14320-14326, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36545136

RESUMO

All carbon α-quaternary aldehydes are prepared via Co(iii)-catalysed sequential C-H bond addition to dienes and acetic formic anhydride, representing a rare example of intermolecular carboformylation. A wide range of internally substituted dienes containing diverse functionality can be employed in this reaction, affording complex α-quaternary aldehydes that would not be accessible via hydroformylation approaches. Mechanistic investigations, including control reactions and deuterium labeling studies, establish a catalytic cycle that accounts for formyl group introduction with an uncommon 1,3-addition selectivity to the conjugated diene. Investigations into the role of the uniquely effective additive Proton Sponge® were also conducted, leading to the observation of a putative, intermediate Co(i) tetramethylfulvene complex at low temperatures via NMR spectroscopy. The synthetic utility of the aldehyde products is demonstrated by various transformations, including proline-catalysed asymmetric aldol addition, reductive amination, and the asymmetric synthesis of amines using tert-butanesulfinamide technology.

16.
ACS Catal ; 12(20): 12860-12868, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36406894

RESUMO

We report a photocatalyzed epimerization of morpholines and piperazines that proceeds by reversible hydrogen atom transfer (HAT) and provides an efficient strategy for editing the stereochemical configurations of these saturated nitrogen heterocycles, which are prevalent in drugs. The more stable morpholine and piperazine isomers are obtained from the more synthetically accessible but less stable stereoisomers, and a broad scope is demonstrated in terms of substitution patterns and functional group compatibility. The observed distributions of diastereomers correlate well with the relative energies of the diastereomer pairs as determined by density functional theory (DFT) calculations. Mechanistic studies, including luminescence quenching, deuterium labeling reactions, and determination of reversibility support a thiyl radical mediated HAT pathway for the epimerization of morpholines. Investigation of piperazine epimerization established that the mechanism is more complex and led to the development of thiol free conditions for the highly stereoselective epimerization of N,N'-dialkyl piperazines for which a previously unrecognized radical chain HAT mechanism is proposed.

17.
Nature ; 610(7932): 582-591, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171289

RESUMO

There is considerable interest in screening ultralarge chemical libraries for ligand discovery, both empirically and computationally1-4. Efforts have focused on readily synthesizable molecules, inevitably leaving many chemotypes unexplored. Here we investigate structure-based docking of a bespoke virtual library of tetrahydropyridines-a scaffold that is poorly sampled by a general billion-molecule virtual library but is well suited to many aminergic G-protein-coupled receptors. Using three inputs, each with diverse available derivatives, a one pot C-H alkenylation, electrocyclization and reduction provides the tetrahydropyridine core with up to six sites of derivatization5-7. Docking a virtual library of 75 million tetrahydropyridines against a model of the serotonin 5-HT2A receptor (5-HT2AR) led to the synthesis and testing of 17 initial molecules. Four of these molecules had low-micromolar activities against either the 5-HT2A or the 5-HT2B receptors. Structure-based optimization led to the 5-HT2AR agonists (R)-69 and (R)-70, with half-maximal effective concentration values of 41 nM and 110 nM, respectively, and unusual signalling kinetics that differ from psychedelic 5-HT2AR agonists. Cryo-electron microscopy structural analysis confirmed the predicted binding mode to 5-HT2AR. The favourable physical properties of these new agonists conferred high brain permeability, enabling mouse behavioural assays. Notably, neither had psychedelic activity, in contrast to classic 5-HT2AR agonists, whereas both had potent antidepressant activity in mouse models and had the same efficacy as antidepressants such as fluoxetine at as low as 1/40th of the dose. Prospects for using bespoke virtual libraries to sample pharmacologically relevant chemical space will be considered.


Assuntos
Antidepressivos , Pirrolidinas , Receptor 5-HT2A de Serotonina , Animais , Camundongos , Antidepressivos/farmacologia , Microscopia Crioeletrônica , Fluoxetina/administração & dosagem , Fluoxetina/farmacologia , Alucinógenos/administração & dosagem , Alucinógenos/farmacologia , Ligantes , Pirrolidinas/administração & dosagem , Pirrolidinas/farmacologia , Receptor 5-HT2A de Serotonina/metabolismo , Bibliotecas de Moléculas Pequenas
18.
J Am Chem Soc ; 144(39): 17808-17814, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36154032

RESUMO

Sulfoximines are increasingly incorporated in agrochemicals and pharmaceuticals, with the two enantiomers of chiral sulfoximines often having profoundly different binding interactions with biomolecules. Therefore, their application to drug discovery and development requires the challenging preparation of single enantiomers rather than racemic mixtures. Here, we report a general and fundamentally new asymmetric synthesis of sulfoximines. The first S-alkylation of sulfenamides, which are readily accessible sulfur compounds with one carbon and one nitrogen substituent, represents the key step. A broad scope for S-alkylation was achieved by rhodium-catalyzed coupling with diazo compounds under mild conditions. When a chiral rhodium catalyst was utilized with loadings as low as 0.1 mol %, the S-alkylation products were obtained in high yields and with enantiomeric ratios up to 98:2 at the newly generated chiral sulfur center. The S-alkylation products were efficiently converted to a variety of sulfoximines with complete retention of stereochemistry. The utility of this approach was further demonstrated by the asymmetric synthesis of a complex sulfoximine agrochemical.


Assuntos
Ródio , Agroquímicos , Alquilação , Carbono , Catálise , Estrutura Molecular , Nitrogênio , Preparações Farmacêuticas , Ródio/química , Estereoisomerismo , Sulfamerazina , Enxofre/química
19.
Eur J Med Chem ; 243: 114712, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36116232

RESUMO

Mitogen-activated protein kinase (MAPK) phosphatase 5 (MKP5) is responsible for regulating the activity of the stress-responsive MAPKs and has been put forth as a potential therapeutic target for a number of diseases, including dystrophic muscle disease a fatal rare disease which has neither a treatment nor cure. In previous work, we identified Compound 1 (3,3-dimethyl-1-((9-(methylthio)-5,6-dihydrothieno[3,4-h]quinazolin-2-yl)thio)butan-2-one) as the lead compound of a novel class of MKP5 inhibitors. In this work, we explore the structure-activity relationship for inhibition of MKP5 through modifications to the scaffold and functional groups present in 1. A series of derivative compounds was designed, synthesized, and evaluated for inhibition of MKP5. In addition, the X-ray crystal structures of six enzyme-inhibitor complexes were solved, further elucidating the necessary requirements for MKP5 inhibition. We found that the parallel-displaced π-π interaction between the inhibitor three-ring core and Tyr435 is critical for modulating potency, and that modifications to the core and functionalization at the C-9 position are essential for ensuring proper positioning of the core for this interaction. These results lay the foundation from which more potent MKP5 allosteric inhibitors can be developed for potential therapeutics towards the treatment of dystrophic muscle disease.


Assuntos
Relação Estrutura-Atividade
20.
ACS Catal ; 12(13): 7798-7803, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35832573

RESUMO

Most known methods to access δ-lactams with stereogenic centers at the α- and ß-positions are highly selective for the contra-thermodynamic syn diastereomer, typically via hydrogenation of the corresponding pyridinones or quinolinones. We describe here the development of a photoredox-mediated hydrogen atom transfer (HAT) approach for the epimerization of δ-lactams to access the more stable anti diastereomers from the contra-thermodynamic syn isomers. The reaction displays broad functional group compatibility, including acid, ester, 1°, 2° and 3° amide, carbamate, and pyridyl groups, and was effective for a range of differently substituted monocyclic and bicyclic lactams. Experimentally observed diastereoselectivities are consistent with the calculated relative stabilities of lactam diastereomers. Convergence to the same diastereomer ratio from the syn- and anti- diastereomers establishes that reversible epimerization provides an equilibrium mixture of diastereomers. Additionally, deuterium labeling and luminescence quenching studies shed further light on the mechanism of the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA