Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Lancet Oncol ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38834087

RESUMO

BACKGROUND: Current systemic therapies for metastatic pancreatic ductal adenocarcinoma are associated with poor outcomes with a 5-year overall survival rate under 5%. We aimed to assess the safety and antitumour activity of mitazalimab, a human CD40 agonistic IgG1 antibody, with modified FOLFIRINOX (mFOLFIRINOX; fluorouracil, leucovorin, oxaliplatin, and irinotecan), in chemotherapy-naive patients with metastatic pancreatic ductal adenocarcinoma. METHODS: OPTIMIZE-1 was a single-arm, multicentre, phase 1b/2 study which enrolled adults with histologically-confirmed metastatic pancreatic ductal adenocarcinoma and European Cooperative Oncology Group performance status 0 or 1 in 14 university hospitals in Belgium, France, and Spain. The primary endpoint of phase 1b was to determine the recommended phase 2 dose of intravenous mitazalimab (450 µg/kg or 900 µg/kg) when combined with intravenous mFOLFIRINOX (oxaliplatin 85 mg/m2, leucovorin 400 mg/m2, irinotecan 150 mg/m2, fluorouracil 2400 mg/m2). In the first 21-day treatment cycle, mitazalimab was administered on days 1 and 10, and mFOLFIRINOX on day 8. In subsequent 14-day cycles mitazalimab was administered 2 days after mFOLFIRINOX. The phase 2 primary endpoint was objective response rate. Activity and safety analyses were conducted on the full analysis set (all patients who received the combination of mitazalimab at the recommended phase 2 dose and mFOLFIRINOX for at least two treatment cycles) and safety set (all patients who received any study treatment), respectively. Enrolment is complete, and data represents a primary analysis of the ongoing trial. The trial is registered at Clinicaltrials.gov (NCT04888312). FINDINGS: Between Sept 29, 2021, and March 28, 2023, 88 patients were screened and 70 patients were enrolled (40 [57%] were female and 30 [43%] were male). In phase 1b, 900 µg/kg mitazalimab was determined as the recommended phase 2 dose. Overall, five patients received 450 µg/kg mitazalimab; 65 received 900 µg/kg mitazalimab. No dose-limiting toxicities were observed at 450 µg/kg, and one dose-limiting toxicity was observed at 900 µg/kg. 57 patients were evaluated for activity, and all 70 patients were included in the safety set. At data cutoff on Nov 14, 2023, median follow-up was 12·7 months (95% CI 11·1-15·7). Of the 57 patients, 29 (51%) remained on study and 18 (32%) remained on treatment. The primary endpoint (objective response rate >30%) was met (objective response rates in 23 [40%]; one-sided 90% CI ≥32 of 57 patients). The most common grade 3 or worse adverse events were neutropenia (18 [26%] of 70 patients), hypokalaemia (11 patients [16%]), and anaemia and thrombocytopenia (eight patients [11%]). Serious adverse events were reported in 29 (41%) of 70 patients, the most common being vomiting (five [7%] of 70 patients), decreased appetite (four [6%]), and diarrhoea and cholangitis (three [4%] of 70 patients for each), none considered related to mitazalimab. No treatment-related deaths were reported. INTERPRETATION: Mitazalimab with mFOLFIRINOX demonstrated manageable safety and encouraging activity, warranting continued development in a phase 3, randomised, controlled trial. The results from OPTIMIZE-1 pave the way for further exploration and confirmation of a novel immunotherapy treatment regimen for metastatic pancreatic ductal adenocarcinoma, which is a complex and aggressive cancer with very low survival rates and restricted treatment options. FUNDING: Alligator Bioscience.

2.
Expert Opin Biol Ther ; 24(5): 351-363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38764393

RESUMO

INTRODUCTION: There is a need for new therapies that can enhance response rates and broaden the number of cancer indications where immunotherapies provide clinical benefit. CD40 targeting therapies provide an opportunity to meet this need by promoting priming of tumor-specific T cells and reverting the suppressive tumor microenvironment. This is supported by emerging clinical evidence demonstrating the benefits of immunotherapy with CD40 antibodies in combination with standard of care chemotherapy. AREAS COVERED: This review is focused on the coming wave of next-generation CD40 agonists aiming to improve efficacy and safety, using new approaches and formats beyond monospecific antibodies. Further, the current understanding of the role of different CD40 expressing immune cell populations in the tumor microenvironment is reviewed. EXPERT OPINION: There are multiple promising next-generation approaches beyond monospecific antibodies targeting CD40 in immuno-oncology. Enhancing efficacy is the most important driver for this development, and approaches that maximize the ability of CD40 to both remodel the tumor microenvironment and boost the anti-tumor T cell response provide great opportunities to benefit cancer patients. Enhanced understanding of the role of different CD40 expressing immune cells in the tumor microenvironment may facilitate more efficient clinical development of these compounds.


Assuntos
Antígenos CD40 , Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Antígenos CD40/agonistas , Antígenos CD40/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Animais , Microambiente Tumoral/imunologia
3.
Cancer Immunol Immunother ; 72(12): 4145-4159, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796298

RESUMO

BACKGROUND: 4-1BB (CD137) is a co-stimulatory receptor highly expressed on tumor reactive effector T cells and NK cells, which upon stimulation prolongs persistence of tumor reactive effector T and NK cells within the tumor and induces long-lived memory T cells. 4-1BB agonistic antibodies have been shown to induce strong anti-tumor effects that synergize with immune checkpoint inhibitors. The first generation of 4-1BB agonists was, however, hampered by dose-limiting toxicities resulting in suboptimal dose levels or poor agonistic activity. METHODS: ATOR-1017 (evunzekibart), a second-generation Fc-gamma receptor conditional 4-1BB agonist in IgG4 format, was designed to overcome the limitations of the first generation of 4-1BB agonists, providing strong agonistic effect while minimizing systemic immune activation and risk of hepatoxicity. The epitope of ATOR-1017 was determined by X-ray crystallography, and the functional activity was assessed in vitro and in vivo as monotherapy or in combination with anti-PD1. RESULTS: ATOR-1017 binds to a unique epitope on 4-1BB enabling ATOR-1017 to activate T cells, including cells with an exhausted phenotype, and NK cells, in a cross-linking dependent, FcγR-conditional, manner. This translated into a tumor-directed and potent anti-tumor therapeutic effect in vivo, which was further enhanced with anti-PD-1 treatment. CONCLUSIONS: These preclinical data demonstrate a strong safety profile of ATOR-1017, together with its potent therapeutic effect as monotherapy and in combination with anti-PD1, supporting further clinical development of ATOR-1017.


Assuntos
Neoplasias , Linfócitos T , Humanos , Receptores de IgG , Anticorpos Monoclonais/uso terapêutico , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Epitopos
4.
Cells ; 12(19)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37830579

RESUMO

CD40-targeting therapies can enhance the dendritic cell priming of tumor-specific T cells and repolarize intratumoral macrophages to alleviate the tumoral immunosuppressive environment and remodel the extracellular matrix. Mitazalimab is a potent agonistic CD40 monoclonal IgG1 antibody currently under clinical development. This study used RNA sequencing of blood samples from a subset of patients from a Phase I trial with mitazalimab (NCT02829099) to assess peripheral pharmacodynamic activity. We found that mitazalimab induced transient peripheral transcriptomic alterations (at 600 µg/kg and 900 µg/kg dose administered intravenously), which mainly were attributed to immune activation. In particular, the transcriptomic alterations showed a reduction in effector cells (e.g., CD8+ T cells and natural killer cells) and B cells peripherally with the remaining cells (e.g., dendritic cells, monocytes, B cells, and natural killer cells) showing transcription profiles consistent with activation. Lastly, distinct patient subgroups based on the pattern of transcriptomic alterations could be identified. In summary, the data presented herein reinforce the anticipated mode of action of mitazalimab and support its ongoing clinical development.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Linfócitos T CD8-Positivos , Neoplasias , Humanos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos CD40/imunologia , Neoplasias/tratamento farmacológico , Análise de Sequência de RNA
5.
Mol Cancer Ther ; 22(1): 89-101, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36343381

RESUMO

4-1BB (CD137) is an activation-induced costimulatory receptor that regulates immune responses of activated CD8 T and natural killer cells, by enhancing proliferation, survival, cytolytic activity, and IFNγ production. The ability to induce potent antitumor activity by stimulating 4-1BB on tumor-specific cytotoxic T cells makes 4-1BB an attractive target for designing novel immuno-oncology therapeutics. To minimize systemic immune toxicities and enhance activity at the tumor site, we have developed a novel bispecific antibody that stimulates 4-1BB function when co-engaged with the tumor-associated antigen 5T4. ALG.APV-527 was built on the basis of the ADAPTIR bispecific platform with optimized binding domains to 4-1BB and 5T4 originating from the ALLIGATOR-GOLD human single-chain variable fragment library. The epitope of ALG.APV-527 was determined to be located at domain 1 and 2 on 4-1BB using X-ray crystallography. As shown in reporter and primary cell assays in vitro, ALG.APV-527 triggers dose-dependent 4-1BB activity mediated only by 5T4 crosslinking. In vivo, ALG.APV-527 demonstrates robust antitumor responses, by inhibiting growth of established tumors expressing human 5T4 followed by a long-lasting memory immune response. ALG.APV-527 has an antibody-like half-life in cynomolgus macaques and was well tolerated at 50.5 mg/kg. ALG.APV-527 is uniquely designed for 5T4-conditional 4-1BB-mediated antitumor activity with potential to minimize systemic immune activation and hepatotoxicity while providing efficacious tumor-specific responses in a range of 5T4-expressing tumor indications as shown by robust activity in preclinical in vitro and in vivo models. On the basis of the combined preclinical dataset, ALG.APV-527 has potential as a promising anticancer therapeutic for the treatment of 5T4-expressing tumors.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Anticorpos de Cadeia Única , Humanos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígenos de Neoplasias , Linfócitos T , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Ligante 4-1BB/metabolismo
6.
J Immunother Cancer ; 10(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36323431

RESUMO

BACKGROUND: Indications with poor T-cell infiltration or deficiencies in T-cell priming and associated unresponsiveness to established immunotherapies represent an unmet medical need in oncology. CD40-targeting therapies designed to enhance antigen presentation, generate new tumor-specific T cells, and activate tumor-infiltrating myeloid cells to remodel the tumor microenvironment, represent a promising opportunity to meet this need. In this study, we present the first in vivo data supporting a role for tumor-associated antigen (TAA)-mediated uptake and cross-presentation of tumor antigens to enhance tumor-specific T-cell priming using CD40×TAA bispecific antibodies, a concept we named Neo-X-Prime. METHODS: Bispecific antibodies targeting CD40 and either of two cell-surface expressed TAA, carcinoembryonic antigen-related cell adhesion molecule 5 (CEA) or epithelial cell adhesion molecule (EpCAM), were developed in a tetravalent format. TAA-conditional CD40 agonism, activation of tumor-infiltrating immune cells, antitumor efficacy and the role of delivery of tumor-derived material such as extracellular vesicles, tumor debris and exosomes by the CD40×TAA bispecific antibodies were demonstrated in vitro using primary human and murine cells and in vivo using human CD40 transgenic mice with different tumor models. RESULTS: The results showed that the CD40×TAA bispecific antibodies induced TAA-conditional CD40 activation both in vitro and in vivo. Further, it was demonstrated in vitro that they induced clustering of tumor debris and CD40-expressing cells in a dose-dependent manner and superior T-cell priming when added to dendritic cells (DC), ovalbumin (OVA)-specific T cells and OVA-containing tumor debris or exosomes. The antitumor activity of the Neo-X-Prime bispecific antibodies was demonstrated to be significantly superior to the monospecific CD40 antibody, and the resulting T-cell dependent antitumor immunity was directed to tumor antigens other than the TAA used for targeting (EpCAM). CONCLUSIONS: The data presented herein support the hypothesis that CD40×TAA bispecific antibodies can engage tumor-derived vesicles containing tumor neoantigens to myeloid cells such as DCs resulting in an improved DC-mediated cross-priming of tumor-specific CD8+ T cells. Thus, this principle may offer therapeutics strategies to enhance tumor-specific T-cell immunity and associated clinical benefit in indications characterized by poor T-cell infiltration or deficiencies in T-cell priming.


Assuntos
Anticorpos Biespecíficos , Apresentação Cruzada , Humanos , Camundongos , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Linfócitos T CD8-Positivos , Molécula de Adesão da Célula Epitelial/metabolismo , Células Dendríticas , Antígenos CD40/metabolismo , Antígenos de Neoplasias
7.
Cancer Med ; 11(15): 3023-3032, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35297213

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) patients have limited effect from T-cell-based therapies, such as PD-1 and CTLA-4 blockade. However, recent data indicate that AML patients with TP53 mutation have higher immune infiltration and other immunomodulatory therapies could thus potentially be effective. Here, we performed the transcriptional analysis of distinct T-cell subpopulations from TP53-mutated AML to identify gene expression signatures suggestive of altered functional properties. METHODS: CD8+ cytotoxic T lymphocytes (CTLs), conventional helper T cells (Th), and regulatory T cells (Tregs) were sorted from peripheral blood of AML patients with TP53 mutation (n = 5) and healthy donors (n = 3), using FACS, and the different subpopulations were subsequently subjected to RNA-sequencing. Differentially expressed genes were identified and gene set enrichment analysis (GSEA) was performed to outline altered pathways and exhaustion status. Also, expression levels for a set of genes encoding established and emerging immuno-oncological targets were defined. RESULTS: The results showed altered transcriptional profiles for each of the T-cell subpopulations from TP53-mutated AML as compared to control subjects. IFN-α and IFN-γ signaling were stronger in TP53-mutated AML for both CTLs and Tregs. Furthermore, in TP53-mutated AML as compared to healthy controls, Tregs showed gene expression signatures suggestive of metabolic adaptation to their environment, whereas CTLs exhibited features of exhaustion/dysfunction with a stronger expression of TIM3 as well as enrichment of a gene set related to exhaustion. CONCLUSIONS: The results provide insights on mechanisms underlying the inadequate immune response to leukemic cells in TP53-mutated AML and open up for further exploration toward novel treatment regimens for these patients.


Assuntos
Leucemia Mieloide Aguda , Linfócitos T Reguladores , Linfócitos T CD8-Positivos , Humanos , Leucemia Mieloide Aguda/metabolismo , Mutação , Linfócitos T Citotóxicos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Nat Commun ; 12(1): 7296, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911975

RESUMO

CD137 (4-1BB; TNFSR9) is an activation-induced surface receptor that through costimulation effects provide antigen-primed T cells with augmented survival, proliferation and effector functions as well as metabolic advantages. These immunobiological mechanisms are being utilised for cancer immunotherapy with agonist CD137-binding and crosslinking-inducing agents that elicit CD137 intracellular signaling. In this study, side-by-side comparisons show that provision of CD137 costimulation in-cis with regard to the TCR-CD3-ligating cell is superior to that provided in-trans in terms of T cell activation, proliferation, survival, cytokine secretion and mitochondrial fitness in mouse and human. Cis ligation of CD137 relative to the TCR-CD3 complex results in more intense canonical and non-canonical NF-κB signaling and provides a more robust induction of cell cycle and DNA damage repair gene expression programs. Here we report that the superiority of cis versus trans CD137-costimulation is readily observed in vivo and is relevant for understanding the immunotherapeutic effects of CAR T cells and CD137 agonistic therapies currently undergoing clinical trials, which may provide costimulation either in cis or in trans.


Assuntos
Complexo CD3/imunologia , Linfócitos T CD8-Positivos/imunologia , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Complexo CD3/genética , Proliferação de Células , Citocinas/genética , Citocinas/imunologia , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética
9.
Cancer Immunol Immunother ; 70(12): 3629-3642, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33948686

RESUMO

Non-responders to checkpoint inhibitors generally have low tumor T cell infiltration and could benefit from immunotherapy that activates dendritic cells, with priming of tumor-reactive T cells as a result. Such therapies may be augmented by providing tumor antigen in the form of cancer vaccines. Our aim was to study the effects of mitazalimab (ADC-1013; JNJ-64457107), a human anti-CD40 agonist IgG1 antibody, on activation of antigen-presenting cells, and how this influences the priming and anti-tumor potential of antigen-specific T cells, in mice transgenic for human CD40. Mitazalimab activated splenic CD11c+ MHCII+ dendritic cells and CD19+ MHCII+ B cells within 6 h, with a return to baseline within 1 week. This was associated with a dose-dependent release of proinflammatory cytokines in the blood, including IP-10, MIP-1α and TNF-α. Mitazalimab administered at different dose regimens with ovalbumin protein showed that repeated dosing expanded ovalbumin peptide (SIINFEKL)-specific CD8+ T cells and increased the frequency of activated ICOS+ T cells and CD44hi CD62L- effector memory T cells in the spleen. Mitazalimab prolonged survival of mice bearing MB49 bladder carcinoma tumors and increased the frequency of activated granzyme B+ CD8+ T cells in the tumor. In the ovalbumin-transfected tumor E.G7-OVA lymphoma, mitazalimab administered with either ovalbumin protein or SIINFEKL peptide prolonged the survival of E.G7-OVA tumor-bearing mice, as prophylactic and therapeutic treatment. Thus, mitazalimab activates antigen-presenting cells, which improves expansion and activation of antigen-specific T cells and enhances the anti-tumor efficacy of a model cancer vaccine.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Células Apresentadoras de Antígenos/imunologia , Antígenos CD40/imunologia , Vacinas Anticâncer/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Linfócitos B/imunologia , Antígeno CD11c/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Citocinas/imunologia , Células Dendríticas/imunologia , Feminino , Humanos , Imunoterapia/métodos , Inflamação/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
10.
Expert Opin Biol Ther ; 21(12): 1635-1646, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34043482

RESUMO

Introduction: CD40 signaling activates dendritic cells leading to improved T cell priming against tumor antigens. CD40 agonism expands the tumor-specific T cell repertoire and has the potential to increase the fraction of patients that respond to established immunotherapies.Areas covered: This article reviews current as well as emerging CD40 agonist therapies with a focus on antibody-based therapies, including next generation bispecific CD40 agonists. The scientific rationale for different design criteria, binding epitopes, and formats are discussed.Expert opinion: The ability of CD40 agonists to activate dendritic cells and enhance antigen cross-presentation to CD8+ T cells provides an opportunity to elevate response rates of cancer immunotherapies. While there are many challenges left to address, including optimal dose regimen, CD40 agonist profile, combination partners and indications, we are confident that CD40 agonists will play an important role in the challenging task of reprogramming the immune system to fight cancer.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Anticorpos Monoclonais , Antígenos CD40 , Células Dendríticas , Humanos , Imunoterapia , Neoplasias/terapia
11.
Oncoimmunology ; 9(1): 1730538, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231867

RESUMO

CD40-stimulating immunotherapy can elicit potent anti-tumor responses by activating dendritic cells and enhancing T-cell priming. Tumor vessels orchestrate T-cell recruitment during immune response, but the effect of CD40-stimulating immunotherapy on tumor endothelial cells has not been evaluated. Here, we have investigated how tumor endothelial cells transcriptionally respond to CD40-stimulating immunotherapy by isolating tumor endothelial cells from agonistic CD40 mAb- or isotype-treated mice bearing B16-F10 melanoma, and performing RNA-sequencing. Gene set enrichment analysis revealed that agonistic CD40 mAb therapy increased interferon (IFN)-related responses in tumor endothelial cells, including up-regulation of the immunosuppressive enzyme Indoleamine 2, 3-Dioxygenase 1 (IDO1). IDO1 was predominantly expressed in endothelial cells within the tumor microenvironment, and its expression in tumor endothelium was positively correlated to T-cell infiltration and to increased intratumoral expression of IFNγ. In vitro, endothelial cells up-regulated IDO1 in response to T-cell-derived IFNγ, but not in response to CD40-stimulation. Combining agonistic CD40 mAb therapy with the IDO1 inhibitor epacadostat delayed tumor growth in B16-F10 melanoma, associated with increased activation of tumor-infiltrating T-cells. Hereby, we show that the tumor endothelial cells up-regulate IDO1 upon CD40-stimulating immunotherapy in response to increased IFNγ-secretion by T-cells, revealing a novel immunosuppressive feedback mechanism whereby tumor vessels limit T-cell activation.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Melanoma Experimental , Animais , Células Endoteliais/metabolismo , Endotélio/metabolismo , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Melanoma Experimental/tratamento farmacológico , Camundongos , Microambiente Tumoral , Regulação para Cima
12.
J Immunother Cancer ; 7(1): 103, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975201

RESUMO

BACKGROUND: The CTLA-4 blocking antibody ipilimumab has demonstrated substantial and durable effects in patients with melanoma. While CTLA-4 therapy, both as monotherapy and in combination with PD-1 targeting therapies, has great potential in many indications, the toxicities of the current treatment regimens may limit their use. Thus, there is a medical need for new CTLA-4 targeting therapies with improved benefit-risk profile. METHODS: ATOR-1015 is a human CTLA-4 x OX40 targeting IgG1 bispecific antibody generated by linking an optimized version of the Ig-like V-type domain of human CD86, a natural CTLA-4 ligand, to an agonistic OX40 antibody. In vitro evaluation of T-cell activation and T regulatory cell (Treg) depletion was performed using purified cells from healthy human donors or cell lines. In vivo anti-tumor responses were studied using human OX40 transgenic (knock-in) mice with established syngeneic tumors. Tumors and spleens from treated mice were analyzed for CD8+ T cell and Treg frequencies, T-cell activation markers and tumor localization using flow cytometry. RESULTS: ATOR-1015 induces T-cell activation and Treg depletion in vitro. Treatment with ATOR-1015 reduces tumor growth and improves survival in several syngeneic tumor models, including bladder, colon and pancreas cancer models. It is further demonstrated that ATOR-1015 induces tumor-specific and long-term immunological memory and enhances the response to PD-1 inhibition. Moreover, ATOR-1015 localizes to the tumor area where it reduces the frequency of Tregs and increases the number and activation of CD8+ T cells. CONCLUSIONS: By targeting CTLA-4 and OX40 simultaneously, ATOR-1015 is directed to the tumor area where it induces enhanced immune activation, and thus has the potential to be a next generation CTLA-4 targeting therapy with improved clinical efficacy and reduced toxicity. ATOR-1015 is also expected to act synergistically with anti-PD-1/PD-L1 therapy. The pre-clinical data support clinical development of ATOR-1015, and a first-in-human trial has started (NCT03782467).


Assuntos
Anticorpos Biespecíficos/farmacologia , Antígeno CTLA-4/antagonistas & inibidores , Receptores OX40/agonistas , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Anticorpos Biespecíficos/uso terapêutico , Células CHO , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral/transplante , Cricetulus , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , Estudo de Prova de Conceito , Receptores OX40/genética , Receptores OX40/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia
13.
Int J Cancer ; 145(5): 1189-1199, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30664811

RESUMO

Agonistic CD40 antibodies activate dendritic cells and can expand and activate tumor-specific T cells. Our purpose was to assess the CD40 agonistic antibody ADC-1013 in the clinical setting including intratumoral administration since preclinical studies have indicated that intratumoral is better than intravenous administration. A Phase I, open label, multicenter study was conducted in patients with advanced solid tumors who had received established treatments. A modified 3 + 3 dose-escalation was applied (every other week dosing). Twenty-three patients were treated with ADC-1013 intratumorally (dosing from 22.5 µg/kg up to 400 µg/kg) or intravenously (dosing at 75 µg/kg). The pharmacodynamic effects observed in the patients were further verified in an hCD40tg mouse model. Adverse events were mostly Common Terminology Criteria for Adverse Events (CTCAE) Grades 1 or 2 and transient. The serum concentration ADC-1013 and cytokine release (MCP-1, TNFα and IL-6) were more pronounced in patients receiving injections in deep metastases compared to patients receiving injections in superficial metastases. Treatment with ADC-1013 resulted in a marked decrease in B cell levels in peripheral blood after 24 h while remaining B cells significantly increased their expression of the cell surface activation marker CD86. Activation of antigen-presenting cells and subsequent activation of T cells were demonstrated in hCD40tg mice. Moreover, ADC-1013 treatment in this mouse model acted synergistically with a PD-1 inhibitor. The results from the first-in-human study of ADC-1013 indicate that intratumoral administration of ADC-1013 into superficial lesions is well tolerated at clinically relevant doses and associated with pharmacodynamic responses.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Neoplasias/tratamento farmacológico , Adulto , Idoso , Animais , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Infusões Intralesionais , Infusões Intravenosas , Macaca fascicularis , Masculino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Pessoa de Meia-Idade , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Adulto Jovem
14.
Cancer Immunol Immunother ; 67(1): 47-60, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28905118

RESUMO

The delivery of immunomodulators directly into the tumor potentially harnesses the existing antigen, tumor-specific infiltrating lymphocytes, and antigen presenting cells. This can confer specificity and generate a potent systemic anti-tumor immune response with lower doses and less toxicity compared to systemic administration, in effect an in situ vaccine. Here, we test this concept using the novel combination of immunomodulators anti-CTLA4, -CD137, and -OX40. The triple combination administered intratumorally at low doses to one tumor of a dual tumor mouse model had dramatic local and systemic anti-tumor efficacy in lymphoma (A20) and solid tumor (MC38) models, consistent with an abscopal effect. The minimal effective dose was 10 µg each. The effect was dependent on CD8 T-cells. Intratumoral administration resulted in superior local and distant tumor control compared to systemic routes, supporting the in situ vaccine concept. In a single tumor A20 model, injection close to the tDLN resulted in similar efficacy as intratumoral and significantly better than targeting a non-tDLN, supporting the role of the tDLN as a viable immunotherapy target in addition to the tumor itself. Distribution studies confirmed expected concentration of antibodies in tumor and tDLN, in keeping with the anti-tumor results. Overall intratumoral or peri-tDLN administration of the novel combination of anti-CTLA4, anti-CD137, and anti-OX40, all agents in the clinic or clinical trials, demonstrates potent systemic anti-tumor effects. This immunotherapeutic combination is promising for future clinical development via both these safe and highly efficacious routes of administration.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Neoplasias do Colo/terapia , Imunoterapia/métodos , Linfoma/terapia , Linfonodo Sentinela/patologia , Animais , Antígeno CTLA-4/imunologia , Neoplasias do Colo/imunologia , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Humanos , Linfoma/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores OX40/imunologia , Indução de Remissão , Linfonodo Sentinela/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
15.
Cancer Immunol Immunother ; 66(1): 1-7, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27714433

RESUMO

The most important goals for the field of immuno-oncology are to improve the response rate and increase the number of tumor indications that respond to immunotherapy, without increasing adverse side effects. One approach to achieve these goals is to use tumor-directed immunotherapy, i.e., to focus the immune activation to the most relevant part of the immune system. This may improve anti-tumor efficacy as well as reduce immune-related adverse events. Tumor-directed immune activation can be achieved by local injections of immune modulators in the tumor area or by directing the immune modulator to the tumor using bispecific antibodies. In this review, we focus on therapies targeting checkpoint inhibitors and co-stimulatory receptors that can generate tumor-specific T cell responses through localized immune activation.


Assuntos
Anticorpos Biespecíficos/imunologia , Fatores Imunológicos/imunologia , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Anticorpos Biespecíficos/farmacologia , Humanos , Fatores Imunológicos/farmacologia
16.
Eur J Immunol ; 47(2): 385-393, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27873300

RESUMO

Checkpoint blockade of CTLA-4 results in long-lasting survival benefits in metastatic cancer patients. However, patients treated with CTLA-4 blockade have suffered from immune-related adverse events, most likely due to the breadth of the induced T-cell activation. Here, we investigated the efficacy of a local low-dose anti-CTLA-4 administration for treatment of subcutaneous or orthotopic murine bladder 49 (MB49) bladder carcinoma in C57BL/6 mice. When MB49 tumors were grown s.c., peritumoral (p.t.) injection of anti-CTLA-4 treatment was equally effective as intravenous or s.c. (nontumor bearing flank) administration. Notably, p.t. injection was associated with lower circulating antibody levels and decreased IL-6 serum levels as compared to systemic treatment. Ultrasound-guided intratumoral anti-CTLA-4 antibody treatment of orthotopically growing MB49 tumors resulted in tumor regression, with more than tenfold reduction in systemic antibody levels as compared to i.v. or s.c. administration, in line with the compartmentally restrained nature of the bladder. Local anti-CTLA-4 therapy in combination with anti-PD-1 therapy resulted in complete responses, superior to each therapy alone. In addition, p.t. anti-CTLA-4 therapy was potentiated by depletion of regulatory T cells. Our results demonstrate that local anti-CTLA-4 antibody therapy is equally effective as systemic administration, but reduces systemic antibody levels and cytokine release, and enhances the response to anti-PD1 therapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Antígeno CTLA-4/imunologia , Inibidores do Crescimento/uso terapêutico , Imunoterapia/métodos , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Reguladores/imunologia , Neoplasias da Bexiga Urinária/terapia , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Quimioterapia Combinada , Depleção Linfocítica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Neoplasias Experimentais , Neoplasias da Bexiga Urinária/imunologia
17.
Clin Cancer Res ; 21(5): 1115-26, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25316820

RESUMO

PURPOSE: Local administration of immune-activating antibodies may increase the efficacy and reduce the immune-related adverse events associated with systemic immunotherapy of cancer. Here, we report the development and affinity maturation of a fully human agonistic CD40 antibody (IgG1), ADC-1013. EXPERIMENTAL DESIGN: We have used molecular engineering to generate an agonistic antibody with high affinity for CD40. The functional activity of ADC-1013 was investigated in human and murine in vitro models. The in vivo effect was investigated in two separate bladder cancer models, both using human xenograft tumors in immune deficient NSG mice and using a syngeneic bladder cancer model in a novel human CD40 transgenic mouse. RESULTS: Activation of dendritic cells (DC) by ADC-1013 results in upregulation of the costimulatory molecules CD80 and CD86, and secretion of IL12. ADC-1013 also activates DCs from human CD40 transgenic mice, and peptide-pulsed and ADC-1013-stimulated DCs induce antigen-specific T-cell proliferation in vitro. In vivo, treatment with ADC-1013 in a syngeneic bladder cancer model, negative for hCD40, induces significant antitumor effects and long-term tumor-specific immunity. Furthermore, ADC-1013 demonstrates significant antitumor effects in a human bladder cancer transplanted into immunodeficient NSG mice. CONCLUSIONS: Our data demonstrate that ADC-1013 induces long-lasting antitumor responses and immunologic memory mediated by CD40 stimulation. To the best of our knowledge, ADC-1013 represents the first immunomodulatory antibody developed for local immunotherapy of cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Antígenos CD40/agonistas , Linfócitos T/imunologia , Neoplasias da Bexiga Urinária/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antígenos CD40/química , Antígenos CD40/genética , Antígenos CD40/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Knockout , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Linfócitos T/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncoimmunology ; 3(1): e27614, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24701377

RESUMO

Antibody-mediated blockade of CTLA4 has been shown to be effective in treating a select group of patients with late-stage melanoma. The precise mechanism underlying the clinical activity of CTLA4 immunotherapy is poorly understood, although recent experimental findings indicate that antibody-mediated depletion of regulatory T cells (Tregs) in the tumor microenvironment plays a key role in efficacious antitumor responses. In the current study, we used an experimental model of pancreatic adenocarcinoma to compare the antitumor efficacy of peritumoral low-dose anti-CTLA4 monoclonal antibody (mAb) administration to that of a commonly utilized systemic high-dose anti-CTLA4 regimen. We selected pancreatic adenocarcinoma as it presents a particular challenge to clinicians due to its aggressive behavior, metastatic spread and limited treatment options. Furthermore, Fc gamma receptor (FcγR)-dense myeloid cells commonly infiltrate pancreatic tumors, such that these tumor types exhibit increased susceptibility to CTLA4 antibody-targeted Treg depletion via antibody-dependent cell-mediated cytotoxicity (ADCC). Locally administered anti-CTLA4 mAb effectively reduced tumor growth at a low dose and no additional anti-tumor effects were apparent when increasing the dose or number of injections. No significant difference in overall survival was seen when comparing locally administered low-dose with standard systemic high-dose CTLA4 blockade therapy, and both delivery routes led to increased tumor-infiltrating effector T cells and reduced Treg cells. As opposed to low-dose peritumoral treatment, high-dose systemic therapy stimulated the accumulation of Tregs in secondary lymphoid organs, an effect that could potentially counteract the antitumor immunotherapeutic benefit of CTLA4 blockade. Our study confirms previous findings that local administration of low-dose anti-CTLA4 antibody generates sustained antitumor effects and provides rationale to devise ultrasound-guided intratumoral anti-CTLA4 antibody injection regimens to treat patients with pancreatic adenocarcinoma and other types of solid tumors. In support, clinical relevancy could include reduced immune-related adverse events by limiting systemic antibody spread to immune cell-dense organs.

19.
Cancer Immunol Res ; 2(1): 80-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24778163

RESUMO

Immunotherapy with intratumoral injection of adenoviral vectors expressing CD40L has yielded positive results in experimental and clinical bladder cancer. We therefore hypothesized that anti-CD40 antibody would be effective in this setting. Agonistic CD40 antibodies were developed as vaccine adjuvants but have later been used as treatment of advanced solid tumors and hematologic cancers. Systemic anti-CD40 therapy has been associated with immune-related adverse events, such as cytokine release syndrome and liver toxicity, and local delivery is an attractive approach that could reduce toxicity. Herein, we compared local and systemic anti-CD40 antibody delivery to evaluate efficacy, toxicity, and biodistribution in the experimental MB49 bladder cancer model. Antitumor effects were confirmed in the B16 model. In terms of antitumor efficacy, local anti-CD40 antibody stimulation was superior to systemic therapy at an equivalent dose and CD8 T cells were crucial for tumor growth inhibition. Both administration routes were dependent on host CD40 expression for therapeutic efficacy. In vivo biodistribution studies revealed CD40-specific antibody accumulation in the tumor-draining lymph nodes and the spleen, most likely reflecting organs with frequent target antigen-expressing immune cells. Systemic administration led to higher antibody concentrations in the liver and blood compared with local delivery, and was associated with elevated levels of serum haptoglobin. Despite the lack of a slow-release system, local anti-CD40 therapy was dependent on tumor antigen at the injection site for clearance of distant tumors. To summarize, local low-dose administration of anti-CD40 antibody mediates antitumor effects in murine models with reduced toxicity and may represent an attractive treatment alternative in the clinic.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Antígenos CD40/imunologia , Tecido Linfoide/metabolismo , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Antígenos de Neoplasias/imunologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antígenos CD40/agonistas , Antígenos CD40/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Injeções Intralesionais , Camundongos , Distribuição Tecidual , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/mortalidade
20.
Biomaterials ; 33(26): 6230-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22687756

RESUMO

Agonistic anti-CD40 monoclonal antibodies (mAbs) hold great potential for cancer immunotherapy. However, systemic administration of anti-CD40 mAbs can be associated with severe side effects, such as cytokine release syndrome and liver damage. With the aim to increase the immunostimulatory potency as well as to achieve a local drug retention of anti-CD40 mAbs, we linked an agonistic mAb to immune activating amphiphilic poly(γ-glutamic acid) nanoparticles (γ-PGA NPs). We demonstrate that adsorption of anti-CD40 mAb to γ-PGA NPs (anti-CD40-NPs) improved the stimulatory capacity of the CD40 agonist, resulting in upregulation of costimulatory CD80 and CD86 on antigen-presenting cells, as well as IL-12 secretion. Interestingly, anti-CD40-NPs induced strong synergistic proliferative effects in B cells, possibly resulting from a higher degree of CD40 multimerization, enabled by display of multiple anti-CD40 mAbs on the NPs. In addition, local treatment with anti-CD40-NPs, compared to only soluble CD40 agonist, resulted in a significant reduction in serum levels of IL-6, IL-10, IL-12 and TNF-α in a bladder cancer model. Taken together, our results suggest that anti-CD40-NPs are capable of synergistically enhancing the immunostimulatory effect induced by the CD40 agonist, as well as minimizing adverse side effects associated with systemic cytokine release. This concept of nanomedicine could play an important role in localized immunotherapy of cancer.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Antígenos CD40/metabolismo , Nanopartículas/química , Nanopartículas/uso terapêutico , Ácido Poliglutâmico/análogos & derivados , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antígenos CD40/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Sistemas de Liberação de Medicamentos , Feminino , Citometria de Fluxo , Humanos , Camundongos , Ácido Poliglutâmico/química , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA