Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L190-L205, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338113

RESUMO

Thoracoabdominal asynchrony (TAA), the asynchronous volume changes between the rib cage and abdomen during breathing, is associated with respiratory distress, progressive lung volume loss, and chronic lung disease in the newborn infant. Preterm infants are prone to TAA risk factors such as weak intercostal muscles, surfactant deficiency, and a flaccid chest wall. The causes of TAA in this fragile population are not fully understood and, to date, the assessment of TAA has not included a mechanistic modeling framework to explore the role these risk factors play in breathing dynamics and how TAA can be resolved. We present a dynamic compartmental model of pulmonary mechanics that simulates TAA in the preterm infant under various adverse clinical conditions, including high chest wall compliance, applied inspiratory resistive loads, bronchopulmonary dysplasia, anesthesia-induced intercostal muscle deactivation, weakened costal diaphragm, impaired lung compliance, and upper airway obstruction. Sensitivity analyses performed to screen and rank model parameter influence on model TAA and respiratory volume outputs show that risk factors are additive so that maximal TAA occurs in a virtual preterm infant with multiple adverse conditions, and addressing risk factors individually causes incremental changes in TAA. An abruptly obstructed upper airway caused immediate nearly paradoxical breathing and tidal volume reduction despite greater effort. In most simulations, increased TAA occurred together with decreased tidal volume. Simulated indices of TAA are consistent with published experimental studies and clinically observed pathophysiology, motivating further investigation into the use of computational modeling for assessing and managing TAA.NEW & NOTEWORTHY A novel model of thoracoabdominal asynchrony incorporates literature-derived mechanics and simulates the impact of risk factors on a virtual preterm infant. Sensitivity analyses were performed to determine the influence of model parameters on TAA and respiratory volume. Predicted phase angles are consistent with prior experimental and clinical results, and influential parameters are associated with clinical scenarios that significantly alter phase angle, motivating further investigation into the use of computational modeling for assessing and managing thoracoabdominal asynchrony.


Assuntos
Displasia Broncopulmonar , Recém-Nascido Prematuro , Lactente , Humanos , Recém-Nascido , Recém-Nascido Prematuro/fisiologia , Mecânica Respiratória/fisiologia , Tórax/fisiologia , Simulação por Computador
2.
Biomech Model Mechanobiol ; 18(1): 219-243, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30284059

RESUMO

This study uses a one-dimensional fluid dynamics arterial network model to infer changes in hemodynamic quantities associated with pulmonary hypertension in mice. Data for this study include blood flow and pressure measurements from the main pulmonary artery for 7 control mice with normal pulmonary function and 5 mice with hypoxia-induced pulmonary hypertension. Arterial dimensions for a 21-vessel network are extracted from micro-CT images of lungs from a representative control and hypertensive mouse. Each vessel is represented by its length and radius. Fluid dynamic computations are done assuming that the flow is Newtonian, viscous, laminar, and has no swirl. The system of equations is closed by a constitutive equation relating pressure and area, using a linear model derived from stress-strain deformation in the circumferential direction assuming that the arterial walls are thin, and also an empirical nonlinear model. For each dataset, an inflow waveform is extracted from the data, and nominal parameters specifying the outflow boundary conditions are computed from mean values and characteristic timescales extracted from the data. The model is calibrated for each mouse by estimating parameters that minimize the least squares error between measured and computed waveforms. Optimized parameters are compared across the control and the hypertensive groups to characterize vascular remodeling with disease. Results show that pulmonary hypertension is associated with stiffer and less compliant proximal and distal vasculature with augmented wave reflections, and that elastic nonlinearities are insignificant in the hypertensive animal.


Assuntos
Hemodinâmica , Hipertensão Pulmonar/fisiopatologia , Modelos Biológicos , Animais , Impedância Elétrica , Hipertensão Pulmonar/diagnóstico por imagem , Masculino , Camundongos Endogâmicos C57BL , Dinâmica não Linear , Pressão , Microtomografia por Raio-X
3.
PLoS One ; 13(6): e0198425, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29902195

RESUMO

Non-invasive ventilation is increasingly used for respiratory support in preterm infants, and is associated with a lower risk of chronic lung disease. However, this mode is often not successful in the extremely preterm infant in part due to their markedly increased chest wall compliance that does not provide enough structure against which the forces of inhalation can generate sufficient pressure. To address the continued challenge of studying treatments in this fragile population, we developed a nonlinear lumped-parameter respiratory system mechanics model of the extremely preterm infant that incorporates nonlinear lung and chest wall compliances and lung volume parameters tuned to this population. In particular we developed a novel empirical representation of progressive volume loss based on compensatory alveolar pressure increase resulting from collapsed alveoli. The model demonstrates increased rate of volume loss related to high chest wall compliance, and simulates laryngeal braking for elevation of end-expiratory lung volume and constant positive airway pressure (CPAP). The model predicts that low chest wall compliance (chest stiffening) in addition to laryngeal braking and CPAP enhance breathing and delay lung volume loss. These results motivate future data collection strategies and investigation into treatments for chest wall stiffening.


Assuntos
Lactente Extremamente Prematuro , Pulmão/fisiologia , Mecânica Respiratória , Humanos , Recém-Nascido , Complacência Pulmonar , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA