Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biomol Struct Dyn ; : 1-13, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265952

RESUMO

Five known furofuran lignans, dia-sesamin (1), 5-methoxysesamin (2), epi-magnolin (3), kobusin (4) and yangambin (5) were isolated for the first-time from the oleo-gum resin of Commiphora wightii. This is the first report on the 13C NMR assignments for epi-magnolin (3). Each of the isolated compounds was evaluated for its ability to inhibit MIA PaCa-2 pancreatic cancer cell line. Among them, epi-magnolin (3) displayed potential activity (IC50 = 29 nM) compared to colchicine (IC50 = 56 nM). 3D-flexible alignment revealed that epi-magnolin (3) has great matching with the tubulin polymerization inhibitor, colchicine. Meanwhile, docking studies exhibited that compounds 1-5 displayed good binding free energies against colchicine binding site (CBS) of tubulin with binding modes that were highly comparable to that of colchicine. Compounds 2, 3, and 5 showed superior binding free energies than colchicine (-24.37 kcal/mol). epi-Magnolin (3) showed the highest binding score against CBS. MD simulation studies confirmed the stability of epi-magnolin (3) in the active site for 200 ns. Furthermore, four online servers (Swiss ADME, pkCSM pharmacokinetics, AdmetSAR, and ProTox-II) were utilized to predict the ADMET parameters. The in-silico pharmacokinetics predictions reveled that epi-magnolin (3) has significant oral bioavailability and drug-like capabilities.Communicated by Ramaswamy H. Sarma.

2.
Int J Pharm ; 633: 122621, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36693486

RESUMO

The intention of this work is to assess the repurposed antimicrobial impact of Levocetirizine dihydrochloride (LVC), which is a well-known antihistaminic drug, in addition, to augment the antimicrobial effect by using terpene-enriched vesicles (TPs). To investigate how various parameters affect TPs aspects, TPs were made employing the ethanol-injection-method and optimized d-optimal design. The TPs were characterized based on their entrapment efficiency percentage (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). The optimum TP was submitted to more examinations. The optimum TP (TP12) showed a spherical vesicle having an EE% of 66.39 ± 0.12%, PS of 243.3 ± 4.60 nm, PDI of 0.458 ± 0.003, and ZP of 24.2 ± 0.55 mV. The in-vitro release study results demonstrated that LVC is sustainedly liberated from the optimum TP compared to LVC-solution. The ex-vivo assessment showed that LVC was released in a more sustained manner from TPs-gel related to LVC solution, optimum TP, and LVC gel. Ex-vivo visualization by confocal laser scanning microscopy showed good deposition of the fluorescein-labeled TP. Further, the in-vitro anti-bacterial effect and biofilm inhibition and detachment assessment confirmed the potency of LVC against Methicillin-resistant-Staphylococcus-aureus (MRSA). The in-silico study demonstrated that the LVC has excellent stability with other ingredients combined with it in the TPs, further, it proved that LVC is a potential candidate for treating MRSA. In-vivo assessments revealed a good antimicrobial effect toward MRSA infection. Moreover, the histopathological evaluation confirmed the safety of using TPs-gel topically. In conclusion, MRSA-related skin infections may be treated using the LVC loaded TPs-gel as a promising system.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Projetos de Pesquisa , Antibacterianos/farmacologia
3.
RSC Adv ; 12(51): 32844-32852, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36425179

RESUMO

The COVID-19 pandemic caused a huge health crisis all over the globe. SARS-CoV-2 is the virus responsible for the disease and it is highly contagious leaving millions of confirmed infected cases and a dangerous death toll. Carica papaya is a tropical plant known for its antiviral activity since it possesses different classes of compounds that are believed to combat various viral classes. In this study, the extracts prepared from C. papaya leaves cultivated in Egypt were evaluated for their anti-SARS-CoV-2 activity using crystal violet assay and for their cytotoxicity through MTT assay. The total methanolic extract, n-hexane, ethyl acetate, and n-butanol fractions of papaya leaves were used in the study and the results revealed that the n-hexane fraction has a high anti-SARS-CoV-2 activity with an IC50 value = 1.98 µg mL-1. Moreover, it also showed a high selectivity index value = 104.7. Dereplication of the secondary metabolites in the crude methanolic extract of C. papaya leaves revealed the presence of different classes of compounds including sterols, terpenes, fatty acid, alkaloids and flavonoids that are known to possess antiviral activities against various classes of viruses. The current study was assisted by molecular docking, molecular dynamics simulation and MM-PBSA calculations for the annotated compounds against 6 SARS-CoV-2 target proteins. The results of these in silico-based investigations showed high to moderate binding on the targeted proteins. This postulation may instigate further research studies concerning the compounds responsible for this high anti-SARS-CoV-2 activity of the n-hexane fraction of C. papaya leaves.

4.
Chem Biodivers ; 19(10): e202200632, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36097361

RESUMO

The current pandemic threat presented by viral pathogens like SARS-CoV-2 (COVID-19) suggests that virus emergence and dissemination are not geographically confined. As a result, the quest for antiviral agents has become critical to control this pandemic. In the current study, we provide a novel family of spirocyclic thiopyrimidinone derivatives whose cytotoxicity and antiviral efficacy were investigated against human coronavirus 229E (HCoV-229E) as a model for the Coronaviridae family. We utilized MTT and cytopathic effect (CPE) inhibitory tests on green monkey kidney (vero-E6) cell lines. The new molecules showed varied degrees of antiviral activity against the vero-E6 cell lines with minimal cytotoxicity. With a high level of a selective index (SI=14.8), compound 9 showed outstanding inhibitory ability and could effectively suppress the human coronavirus 229E. Molecular dynamics simulation (MD) studies were performed to measure the interaction and stability of the protein-ligand complex in motion. The MD results for the most active compound 9 explored remarkable interactions with the binding pockets of the main protease (Mpro) of SARS-CoV-2 enzyme confirming the results gained from in vitro experiments. ADMET properties were also predicted for all the tested compounds. All these results demonstrated that the novel spirocyclic thiopyrimidinone derivatives would have the potential to be safe, low-cost chemical compounds that might be used as a novel therapeutic option for Coronaviridae viruses like COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Coronavirus Humano 229E , Chlorocebus aethiops , Humanos , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2 , Simulação de Dinâmica Molecular , Ligantes , Peptídeo Hidrolases
5.
Mol Divers ; 26(5): 2761-2774, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35067751

RESUMO

Optimization and re-optimization of bioactive molecules using in silico methods have found application in the design of more active ones. Herein, we applied a pharmacophore modeling approach to screen potent dual inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) aimed at Alzheimer's disease (AD) treatment. The investigation entails molecular dynamics simulation, docking, pharmacophore modeling, drug-like screening, and binding energy analysis. We prepared a pharmacophore model from approved inhibitors of AChE and BuChE to predict the crucial moieties required for optimum molecular interaction with these proteins. The obtained pharmacophore model, used for database screening via some critical criteria, showed 229 hit molecules. Further analyses showed 42 likely dual inhibitors of AChE/BuChE with drug-like and pharmacokinetics properties the same as the approved cholinesterase inhibitors. Finally, we identified 14 dual molecules with improved potentials over the existing inhibitors and simulated ZINC92385797 bound to human AChE and BuChE structure after noticing that these 14 molecules are similar. The selected compound maintained relative stability at the active sites of both proteins over 120 ns simulation. Our integrated protocols showed the pertinent recipes of anti-AD drug design through the in silico pipeline.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
6.
J Biomol Struct Dyn ; 40(7): 2978-2990, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33155869

RESUMO

The growing occurrence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (Mtb) strains underscores an urgent need for new antibiotics. The development of more bioactive antibiotics against drug-resistant organisms with a different mode of action could be a game-changer for the cure and eradication of tuberculosis (TB). Pantothenate Kinase (PanK) and CTP synthetase (PyrG) are both essential for RNA, DNA, and Lipids biosynthesis pathways. Given the extensive knowledge on these biosynthesis pathways inhibition of Mtb growth and survival, these enzymes present a fascinating opportunity for anti-mycobacterial drug discovery. Recently, it was experimentally established that the active metabolite 11426026 of compound 7947882 (a prodrug activated by EthA monooxygenase, 5-methyl-N-(4-nitrophenyl) thiophene-2-carboxamide) inhibits the activities of PyrG and PanK to indicate novel multitarget therapy aimed at discontinuing Mtb growth. However, the molecular mechanisms of their selective inhibition remain subtle. In this work, molecular dynamics simulations were employed to investigate the inhibitory mechanism as well as the selectivity impact of the active metabolite inhibitor of these enzymes. Computational modeling of the studied protein-ligand systems reveals that the active metabolite can potentially inhibit both PanK and PyrG, thereby creating a pathway as a double target approach in tuberculosis treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Humanos , Mycobacterium tuberculosis/genética , Fosfotransferases (Aceptor do Grupo Álcool) , Tuberculose/tratamento farmacológico
7.
Comb Chem High Throughput Screen ; 25(5): 831-837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33538664

RESUMO

BACKGROUND: Deubiquitinating enzymes (DUBs) protein family have been implicated in some deregulated pathways involved in carcinogeneses, such as cell cycle, gene expression, and DNA damage response (DDR). Zinc finger with UFM1-specific peptidase domain protein (ZUFSP) is one of the recently discovered members of the DUBs. OBJECTIVES: To identify and cross-validate the ZUFSP binding site using the bioinformatic tools, including SiteMap&Metapocket, respectively. To understand the molecular basis of complementary ZUFSP-Ub interaction and associated structural events using MD Simulation. METHODS: In this study, four binding pockets were predicted, characterized, and cross-validated based on physiochemical features such as site score, druggability score, site volume, and site size. Also, a molecular dynamics simulation technique was employed to determine the impact of ubiquitin-binding on ZUFSP. RESULTS: Site 1 with a site score 1.065, Size 102, D scores 1.00, and size volume 261 was predicted to be the most druggable site. Structural studies revealed that upon ubiquitin-binding, the motional movement of ZUFSP was reduced when compared to the unbound ZUFSP. Also, the ZUFSP helical arm (ZHA) domain orient in such a way that it moves closer to the Ub; this orientation enables the formation of a UBD which is very peculiar to ZUFSP. CONCLUSION: The impact of ubiquitin on ZUFSP movement and the characterization of its predicted druggable site can be targeted in the development of therapeutics.


Assuntos
Ubiquitina , Dedos de Zinco , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Domínios Proteicos , Ubiquitina/metabolismo
8.
Cardiovasc Hematol Agents Med Chem ; 20(2): 133-147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34370646

RESUMO

BACKGROUND: Diabetic cardiotoxicity is commonly associated with oxidative injury, inflammation, and endothelial dysfunction. L-ergothioneine (L-egt), a diet-derived amino acid, has been reported to decrease mortality and risk of cardiovascular injury, provides cytoprotection to tissues exposed to oxidative damage, and prevents diabetes-induced perturbation. OBJECTIVE: This study investigated the cardioprotective effects of L-egt on diabetes-induced cardiovascular injuries and its probable mechanism of action. METHODS: Twenty-four male Sprague-Dawley rats were divided into non-diabetic (n = 6) and diabetic groups (n = 18). Six weeks after the induction of diabetes, the diabetic rats were divided into three groups (n = 6) and administered distilled water, L-egt (35mg/kg), and losartan (20mg/kg) by oral gavage for six weeks. Blood glucose and mean arterial pressure (MAP) were recorded pre-and post-treatment, while biochemical, ELISA, and RT-qPCR analyses were conducted to determine inflammatory, injury-related and antioxidant biomarkers in cardiac tissue after euthanasia. Also, an in-silico study, including docking and molecular dynamic simulations of L-egt toward the Keap1- Nrf2 protein complex, was done to provide a basis for the molecular antioxidant mechanism of Legt. RESULTS: Administration of L-egt to diabetic animals reduced serum triglyceride, water intake, MAP, biomarkers of cardiac injury (CK-MB, CRP), lipid peroxidation, and inflammation. Also, Legt increased body weight, antioxidant enzymes, upregulated Nrf2, HO-1, NQO1 expression, and decreased Keap1 expression. The in-silico study showed that L-egt inhibits the Keap1-Nrf2 complex by binding to the active site of Nrf2 protein, thereby preventing its degradation. CONCLUSION: L-egt protects against diabetes-induced cardiovascular injury via the upregulation of the Keap1-Nrf2 pathway and its downstream cytoprotective antioxidants.


Assuntos
Antioxidantes , Diabetes Mellitus Experimental , Ergotioneína , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/prevenção & controle , Ergotioneína/metabolismo , Ergotioneína/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
9.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948055

RESUMO

Developing new, more effective antibiotics against resistant Mycobacterium tuberculosis that inhibit its essential proteins is an appealing strategy for combating the global tuberculosis (TB) epidemic. Finding a compound that can target a particular cavity in a protein and interrupt its enzymatic activity is the crucial objective of drug design and discovery. Such a compound is then subjected to different tests, including clinical trials, to study its effectiveness against the pathogen in the host. In recent times, new techniques, which involve computational and analytical methods, enhanced the chances of drug development, as opposed to traditional drug design methods, which are laborious and time-consuming. The computational techniques in drug design have been improved with a new generation of software used to develop and optimize active compounds that can be used in future chemotherapeutic development to combat global tuberculosis resistance. This review provides an overview of the evolution of tuberculosis resistance, existing drug management, and the design of new anti-tuberculosis drugs developed based on the contributions of computational techniques. Also, we show an appraisal of available software and databases on computational drug design with an insight into the application of this software and databases in the development of anti-tubercular drugs. The review features a perspective involving machine learning, artificial intelligence, quantum computing, and CRISPR combination with available computational techniques as a prospective pathway to design new anti-tubercular drugs to combat resistant tuberculosis.


Assuntos
Antituberculosos/química , Desenho de Fármacos/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Inteligência Artificial , Humanos , Estrutura Molecular , Teoria Quântica , Software , Relação Estrutura-Atividade
10.
J Biomol Struct Dyn ; 39(11): 3825-3841, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33030113

RESUMO

The identification of dual inhibitors targeting the active sites of the cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), have lately surfaced as a multi-approach towards Alzheimer treatment. More recently, a novel series of 4-N-phenylaminoquinolines was synthesized and evaluated against AChE and BuChE in which one of the compounds displayed appreciable inhibition compared to the standard compound, galantamine. To provide a clearer picture of the inhibition mechanism of this potent compound at the molecular level, computational biomolecular modeling was carried out. The investigation was initiated with the exploration of the chemical properties of the identified compound 11 b and reference drug, galantamine. Density functional theory (DFT) calculations reveal some conceptual parameters that provide information on the stability and reactivity of the compounds as potential inhibitors. To unveil the binding mechanism, energetics and enzyme-ligand interactions, molecular dynamics (MD) simulations of six different systems were executed over a period. Calculated binding free energy values are in the same order with experimental IC50 data. Identification of the main residues driving optimum binding of the active compound 11 b to the binding region of both AChE and BuChE showed Trp81 and Trp110 as the most important, respectively. It was proposed that the studied compound could serve as a dual inhibitor for AChE and BuChE, therefore, would potentially be a promising moiety in a multi-target approach for the treatment of Alzheimer's disorder.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
11.
J Biomol Struct Dyn ; 39(17): 6567-6584, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32772814

RESUMO

The global antimicrobial resistance crisis has prompted worldwide efforts to develop new and more efficient antimicrobial compounds, as well as to develop new drug delivery strategies and targeting mechanisms. This study aimed to synthesize a novel polyethylene glycol-fusidic acid (PEG-FA) conjugate for self-assembly into nano-sized structures and explore its potential for simultaneously enhancing aqueous solubility and antibacterial activity of FA. In addition, the ability of PEG-FA to bind to HSA with lower affinity than FA is also investigated. Haemolysis and in vitro cytotoxicity studies confirmed superior biosafety of the novel PEG-FA compared to FA. The water solubility of FA after PEG conjugation was increased by 25-fold compared to the bare drug. PEG-FA nanoparticles displayed particle size, polydispersity index and zeta potential of 149.3 ± 0.21 nm, 0.267 ± 0.01 and 5.97 ± 1.03 mV, respectively. Morphology studies using high-resolution transmission electron microscope revealed a homogenous spherical shape of the PEG-FA nanoparticles. In silico studies showed that Van der Waals forces facilitated PEG-FA self-assembly. HSA binding studies showed that PEG-FA had very weak or no interaction with HSA using in silico molecular docking (-2.93 kcal/mol) and microscale thermophoresis (Kd=14999 ± 1.36 µM), which may prevent bilirubin displacement. Conjugation with PEG did not inhibit the antibacterial activity of FA but rather enhanced it by 2.5-fold against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus, compared to the bare FA. These results show that PEG-FA can simultaneously enhance solubility and antibacterial activity of FA, whilst also reducing binding of HSA to decrease its side effects.


Assuntos
Ácido Fusídico , Staphylococcus aureus Resistente à Meticilina , Simulação de Acoplamento Molecular , Polímeros , Albumina Sérica , Solubilidade
12.
Pharmaceutics ; 12(11)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202629

RESUMO

Globally, human beings continue to be at high risk of infectious diseases caused by methicillin-resistant Staphylococcus aureus (MRSA); and current treatments are being depleted due to antimicrobial resistance. Therefore, the synthesis and formulation of novel materials is essential for combating antimicrobial resistance. The study aimed to synthesize a quaternary bicephalic surfactant (StBAclm) and thereof to formulate pH-responsive vancomycin (VCM)-loaded quatsomes to enhance the activity of the antibiotic against MRSA. The surfactant structure was confirmed using 1H, 13C nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and high-resolution mass spectrometry (HRMS). The quatsomes were prepared using a sonication/dispersion method and were characterized using various in vitro, in vivo, and in silico techniques. The in vitro cell biocompatibility studies of the surfactant and pH-responsive vancomycin-loaded quatsomes (VCM-StBAclm-Qt1) revealed that they are biosafe. The prepared quatsomes had a mean hydrodynamic diameter (MHD), polydispersity index (PDI), and drug encapsulation efficiency (DEE) of 122.9 ± 3.78 nm, 0.169 ± 0.02 mV, and 52.22 ± 8.4%, respectively, with surface charge switching from negative to positive at pH 7.4 and pH 6.0, respectively. High-resolution transmission electron microscopy (HR-TEM) characterization of the quatsomes showed spherical vesicles with MHD similar to the one obtained from the zeta-sizer. The in vitro drug release of VCM from the quatsomes was faster at pH 6.0 compared to pH 7.4. The minimum inhibitory concentration (MIC) of the drug loaded quatsomes against MRSA was 32-fold and 8-fold lower at pH 6.0 and pH 7.4, respectively, compared to bare VCM, demonstrating the pH-responsiveness of the quatsomes and the enhanced activity of VCM at acidic pH. The drug-loaded quatsomes demonstrated higher electrical conductivity and a decrease in protein and deoxyribonucleic acid (DNA) concentrations as compared to the bare drug. This confirmed greater MRSA membrane damage, compared to treatment with bare VCM. The flow cytometry study showed that the drug-loaded quatsomes had a similar bactericidal killing effect on MRSA despite a lower (8-fold) VCM concentration when compared to the bare VCM. Fluorescence microscopy revealed the ability of the drug-loaded quatsomes to eradicate MRSA biofilms. The in vivo studies in a skin infection mice model showed that groups treated with VCM-loaded quatsomes had a 13-fold decrease in MRSA CFUs when compared to the bare VCM treated groups. This study confirmed the potential of pH-responsive VCM-StBAclm quatsomes as an effective delivery system for targeted delivery and for enhancing the activity of antibiotics.

13.
Pharm Dev Technol ; 25(9): 1090-1108, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32684052

RESUMO

In this study self-assembled drug delivery system (SADDs) composed of a hydrophobic d-α-tocopherol succinate (TS) and a hydrophilic vancomycin (VCM) were formulated, and its potential for enhancing the antibacterial activity of VCM against Staphylococcus aureus (SA) and Methicillin-resistant Staphylococcus aureus (MRSA) were explored. The SADDs were synthesized via supramolecular complexation, then characterized for in silico, in vitro and in vivo studies. In silico studies confirmed the self-assembly of VCM/TS into NPs. The size, surface charge and drug loading of the SADDs was ˂100 nm, -27 mV and 68%, respectively. The SADDs were non-hemolytic and biosafe. A sustained release of VCM from SADDs was noted, with 52.2% release after 48 hr. The in vitro antibacterial test showed a twofold decrease in Minimum inhibitory concentration (MIC) against SA and MRSA, and a significantly higher reduction in MRSA biofilms compared to bare VCM. Further, in silico studies confirmed strong and stable binding of TS to MRSA efflux pumps. The in vivo study using mice skin infection models showed a 9.5-fold reduction in bacterial load after treatment with SADDs, in comparison with bare VCM. These findings affirmed that VCM/TS NPs as a promising novel nano-delivery for treating bacterial infections.


Assuntos
Antibacterianos/farmacologia , Vancomicina/farmacologia , alfa-Tocoferol/farmacologia , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Simulação por Computador , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Células HEK293 , Humanos , Células MCF-7 , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos , Nanopartículas/química , Tamanho da Partícula , Infecções Estafilocócicas/tratamento farmacológico
14.
Comb Chem High Throughput Screen ; 23(8): 687-698, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32338212

RESUMO

For the past few decades, the mechanisms of immune responses to cancer have been exploited extensively and significant attention has been given into utilizing the therapeutic potential of the immune system. Cancer immunotherapy has been established as a promising innovative treatment for many forms of cancer. Immunotherapy has gained its prominence through various strategies, including cancer vaccines, monoclonal antibodies (mAbs), adoptive T cell cancer therapy, and immune checkpoint therapy. However, the full potential of cancer immunotherapy is yet to be attained. Recent studies have identified the use of bioinformatics tools as a viable option to help transform the treatment paradigm of several tumors by providing a therapeutically efficient method of cataloging, predicting and selecting immunotherapeutic targets, which are known bottlenecks in the application of immunotherapy. Herein, we gave an insightful overview of the types of immunotherapy techniques used currently, their mechanisms of action, and discussed some bioinformatics tools and databases applied in the immunotherapy of cancer. This review also provides some future perspectives in the use of bioinformatics tools for immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Biologia Computacional/métodos , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Anticorpos Monoclonais/imunologia , Vacinas Anticâncer/imunologia , Terapia Combinada/métodos , Descoberta de Drogas , Inibidores Enzimáticos/imunologia , Inibidores Enzimáticos/farmacologia , Humanos , Imunidade/efeitos dos fármacos , Terapia de Alvo Molecular , Linfócitos T/imunologia , Resultado do Tratamento
15.
Anticancer Agents Med Chem ; 19(13): 1642-1650, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31250767

RESUMO

BACKGROUND: Aberrant and proliferative expression of the oncogene BCR-ABL in bone marrow cells is one of the prime causes of Chronic Myeloid Leukemia (CML). It has been established that the tyrosine kinase domain of the BCR-ABL protein is a potential therapeutic target for the treatment of CML. Although the first and second line inhibitors against the enzyme are available, recent studies have indicated that monotherapeutic resistance has become a great challenge. OBJECTIVE: In recent studies, the dual inhibition of BCR-ABL by Nilotinib and Asciminib has been shown to overcome drug resistance. This prompted us to investigate the dynamics behind this novel drug combination. METHODS: By the utilization of a wide range of computational tools, we defined and compared BCR-ABL's structural and dynamic characteristics when bound as a dual inhibitor system. RESULTS: Conformational ensemble analysis presented a sustained inactive protein, as the activation loop, inclusive of the characteristic Tyr257, remained in an open position due to the unassailable binding of Asciminib at the allosteric site. Nilotinib also indicated stronger binding at the catalytic site in the presence of Asciminib, thus exposing new avenues in treating Nilotinib-resistance. This was in accordance with intermolecular hydrogen bond interactions with key binding site residues GLU399, Asn259 and Thr252. CONCLUSION: The investigations carried out in this study gave rise to new possibilities in the treatment of resistance in CML, as well as assisting in the design of novel and selective inhibitors as dual anti-cancer drugs.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Niacinamida/análogos & derivados , Pirazóis/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Simulação de Dinâmica Molecular , Niacinamida/administração & dosagem , Niacinamida/química , Niacinamida/farmacologia , Pirazóis/administração & dosagem , Pirazóis/química , Pirimidinas/administração & dosagem , Pirimidinas/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA