Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Science ; 378(6616): 186-192, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36227977

RESUMO

Studies of the proteome would benefit greatly from methods to directly sequence and digitally quantify proteins and detect posttranslational modifications with single-molecule sensitivity. Here, we demonstrate single-molecule protein sequencing using a dynamic approach in which single peptides are probed in real time by a mixture of dye-labeled N-terminal amino acid recognizers and simultaneously cleaved by aminopeptidases. We annotate amino acids and identify the peptide sequence by measuring fluorescence intensity, lifetime, and binding kinetics on an integrated semiconductor chip. Our results demonstrate the kinetic principles that allow recognizers to identify multiple amino acids in an information-rich manner that enables discrimination of single amino acid substitutions and posttranslational modifications. With further development, we anticipate that this approach will offer a sensitive, scalable, and accessible platform for single-molecule proteomic studies and applications.


Assuntos
Proteoma , Proteômica , Aminoácidos/química , Aminopeptidases , Peptídeos/química , Proteômica/métodos , Semicondutores , Análise de Sequência de Proteína/métodos
2.
Nat Cell Biol ; 22(5): 570-578, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32341547

RESUMO

Lissencephaly-1 (Lis1) is a key cofactor for dynein-mediated intracellular transport towards the minus-ends of microtubules. It remains unclear whether Lis1 serves as an inhibitor or an activator of mammalian dynein motility. Here we use single-molecule imaging and optical trapping to show that Lis1 does not directly alter the stepping and force production of individual dynein motors assembled with dynactin and a cargo adaptor. Instead, Lis1 promotes the formation of an active complex with dynactin. Lis1 also favours the recruitment of two dyneins to dynactin, resulting in increased velocity, higher force production and more effective competition against kinesin in a tug-of-war. Lis1 dissociates from motile complexes, indicating that its primary role is to orchestrate the assembly of the transport machinery. We propose that Lis1 binding releases dynein from its autoinhibited state, which provides a mechanistic explanation for why Lis1 is required for efficient transport of many dynein-associated cargos in cells.


Assuntos
Complexo Dinactina/metabolismo , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Linhagem Celular , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Células Sf9 , Suínos
3.
Liver Int ; 40(4): 797-805, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31858694

RESUMO

BACKGROUND AND AIMS: This study aimed to assess the safety and efficacy of sofosbuvir (SOF)-based regimens in patients with moderate to severe renal impairment; a subject which has been questioned by many investigators with conflicting results. METHODS: This is a real-life multicentre retrospective cohort study on 4944 chronic Hepatitis C virus (HCV) patients with chronic kidney disease (CKD) (eGFR <60 mL/min/1.73 m2 ) who received SOF-based therapy in specialized treatment centres affiliated to the National Committee for the Control of Viral Hepatitis in Egypt. The efficacy and safety of SOF-based regimens was assessed. RESULTS: Week 12 virological response rates were 97.5%, 96.7%, 85.7% and 80% in the total cohort, patients with eGFR <30 mL/min/1.73 m2 , patients with associated hepatic decompensation and patients on dialysis respectively. Various treatment regimens did not statistically affect the response rates. Treatment experience, cirrhosis and diabetes were predictors of treatment failure on multivariate analysis. Serious adverse events occurred in 0.1% of cases. Forty patients (0.8%) discontinued treatment. CONCLUSION: Sofosbuvir-based regimens are effective and safe for treating patients with chronic HCV and moderate to severe CKD, and in those with associated hepatic decompensation.


Assuntos
Hepatite C Crônica , Sofosbuvir , Antivirais/efeitos adversos , Quimioterapia Combinada , Egito , Genótipo , Hepacivirus , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Humanos , Estudos Retrospectivos , Ribavirina/uso terapêutico , Sofosbuvir/uso terapêutico , Resposta Viral Sustentada , Resultado do Tratamento
4.
Nat Chem Biol ; 15(11): 1093-1101, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31501589

RESUMO

Cytoplasmic dynein is an ATP-driven motor that transports intracellular cargos along microtubules. Dynein adopts an inactive conformation when not attached to a cargo, and motility is activated when dynein assembles with dynactin and a cargo adaptor. It was unclear how active dynein-dynactin complexes step along microtubules and transport cargos under tension. Using single-molecule imaging, we showed that dynein-dynactin advances by taking 8 to 32-nm steps toward the microtubule minus end with frequent sideways and backward steps. Multiple dyneins collectively bear a large amount of tension because the backward stepping rate of dynein is insensitive to load. Recruitment of two dyneins to dynactin increases the force generation and the likelihood of winning against kinesin in a tug-of-war but does not directly affect velocity. Instead, velocity is determined by cargo adaptors and tail-tail interactions between two closely packed dyneins. Our results show that cargo adaptors modulate dynein motility and force generation for a wide range of cellular functions.


Assuntos
Complexo Dinactina/metabolismo , Animais , Complexo Dinactina/química , Dineínas/química , Dineínas/metabolismo , Humanos , Ligação Proteica
5.
Elife ; 82019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31498080

RESUMO

Kinesin-1 and cytoplasmic dynein are microtubule (MT) motors that transport intracellular cargoes. It remains unclear how these motors move along MTs densely coated with obstacles of various sizes in the cytoplasm. Here, we tested the ability of single and multiple motors to bypass synthetic obstacles on MTs in vitro. Contrary to previous reports, we found that single mammalian dynein is highly capable of bypassing obstacles. Single human kinesin-1 motors fail to avoid obstacles, consistent with their inability to take sideways steps on to neighboring MT protofilaments. Kinesins overcome this limitation when working in teams, bypassing obstacles as effectively as multiple dyneins. Cargos driven by multiple kinesins or dyneins are also capable of rotating around the MT to bypass large obstacles. These results suggest that multiplicity of motors is required not only for transporting cargos over long distances and generating higher forces, but also for maneuvering cargos on obstacle-coated MT surfaces.


Assuntos
Dineínas/metabolismo , Cinesinas/metabolismo , Movimento , Humanos
6.
FASEB J ; 32(6): 3346-3360, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401622

RESUMO

The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein's surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of Thermococcus kodakarensis DNA polymerase.-Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.


Assuntos
Proteínas Arqueais/química , DNA Polimerase Dirigida por DNA/química , Simulação de Dinâmica Molecular , Thermococcus/enzimologia , Oceano Índico
7.
Nature ; 554(7691): 202-206, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29420470

RESUMO

Dynein and its cofactor dynactin form a highly processive microtubule motor in the presence of an activating adaptor, such as BICD2. Different adaptors link dynein and dynactin to distinct cargoes. Here we use electron microscopy and single-molecule studies to show that adaptors can recruit a second dynein to dynactin. Whereas BICD2 is biased towards recruiting a single dynein, the adaptors BICDR1 and HOOK3 predominantly recruit two dyneins. We find that the shift towards a double dynein complex increases both the force and speed of the microtubule motor. Our 3.5 Å resolution cryo-electron microscopy reconstruction of a dynein tail-dynactin-BICDR1 complex reveals how dynactin can act as a scaffold to coordinate two dyneins side-by-side. Our work provides a structural basis for understanding how diverse adaptors recruit different numbers of dyneins and regulate the motile properties of the dynein-dynactin transport machine.


Assuntos
Microscopia Crioeletrônica , Complexo Dinactina/metabolismo , Complexo Dinactina/ultraestrutura , Dineínas/metabolismo , Dineínas/ultraestrutura , Movimento , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Transporte Biológico , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Imagem Individual de Molécula , Suínos
8.
Crit Rev Biochem Mol Biol ; 53(1): 49-63, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29108427

RESUMO

Synchronizing the convergence of the two-oppositely moving DNA replication machineries at specific termination sites is a tightly coordinated process in bacteria. In Escherichia coli, a "replication fork trap" - found within a chromosomal region where forks are allowed to enter but not leave - is set by the protein-DNA roadblock Tus-Ter. The exact sequence of events by which Tus-Ter blocks replisomes approaching from one direction but not the other has been the subject of controversy for many decades. Specific protein-protein interactions between the nonpermissive face of Tus and the approaching helicase were challenged by biochemical and structural studies. These studies show that it is the helicase-induced strand separation that triggers the formation of new Tus-Ter interactions at the nonpermissive face - interactions that result in a highly stable "locked" complex. This controversy recently gained renewed attention as three single-molecule-based studies scrutinized this elusive Tus-Ter mechanism - leading to new findings and refinement of existing models, but also generating new questions. Here, we discuss and compare the findings of each of the single-molecule studies to find their common ground, pinpoint the crucial differences that remain, and push the understanding of this bipartite DNA-protein system further.


Assuntos
Replicação do DNA , DNA Bacteriano/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/química , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mapas de Interação de Proteínas
9.
Nature ; 525(7569): 394-8, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26322585

RESUMO

In all domains of life, DNA synthesis occurs bidirectionally from replication origins. Despite variable rates of replication fork progression, fork convergence often occurs at specific sites. Escherichia coli sets a 'replication fork trap' that allows the first arriving fork to enter but not to leave the terminus region. The trap is set by oppositely oriented Tus-bound Ter sites that block forks on approach from only one direction. However, the efficiency of fork blockage by Tus-Ter does not exceed 50% in vivo despite its apparent ability to almost permanently arrest replication forks in vitro. Here we use data from single-molecule DNA replication assays and structural studies to show that both polarity and fork-arrest efficiency are determined by a competition between rates of Tus displacement and rearrangement of Tus-Ter interactions that leads to blockage of slower moving replisomes by two distinct mechanisms. To our knowledge this is the first example where intrinsic differences in rates of individual replisomes have different biological outcomes.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Complexos Multienzimáticos/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Sequência de Bases , Ligação Competitiva , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Cinética , Modelos Biológicos , Modelos Moleculares , Movimento , Complexos Multienzimáticos/química , Conformação Proteica , Ressonância de Plasmônio de Superfície , Fatores de Tempo
10.
Nucleic Acids Res ; 43(12): 5924-35, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26007657

RESUMO

The Escherichia coli replication terminator protein (Tus) binds to Ter sequences to block replication forks approaching from one direction. Here, we used single molecule and transient state kinetics to study responses of the heterologous phage T7 replisome to the Tus-Ter complex. The T7 replisome was arrested at the non-permissive end of Tus-Ter in a manner that is explained by a composite mousetrap and dynamic clamp model. An unpaired C(6) that forms a lock by binding into the cytosine binding pocket of Tus was most effective in arresting the replisome and mutation of C(6) removed the barrier. Isolated helicase was also blocked at the non-permissive end, but unexpectedly the isolated polymerase was not, unless C(6) was unpaired. Instead, the polymerase was blocked at the permissive end. This indicates that the Tus-Ter mechanism is sensitive to the translocation polarity of the DNA motor. The polymerase tracking along the template strand traps the C(6) to prevent lock formation; the helicase tracking along the other strand traps the complementary G(6) to aid lock formation. Our results are consistent with the model where strand separation by the helicase unpairs the GC(6) base pair and triggers lock formation immediately before the polymerase can sequester the C(6) base.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Pareamento de Bases , DNA/biossíntese , DNA/química , DNA Helicases/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Modelos Genéticos
11.
EMBO J ; 32(9): 1322-33, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23435564

RESUMO

Processive DNA synthesis by the αεθ core of the Escherichia coli Pol III replicase requires it to be bound to the ß2 clamp via a site in the α polymerase subunit. How the ε proofreading exonuclease subunit influences DNA synthesis by α was not previously understood. In this work, bulk assays of DNA replication were used to uncover a non-proofreading activity of ε. Combination of mutagenesis with biophysical studies and single-molecule leading-strand replication assays traced this activity to a novel ß-binding site in ε that, in conjunction with the site in α, maintains a closed state of the αεθ-ß2 replicase in the polymerization mode of DNA synthesis. The ε-ß interaction, selected during evolution to be weak and thus suited for transient disruption to enable access of alternate polymerases and other clamp binding proteins, therefore makes an important contribution to the network of protein-protein interactions that finely tune stability of the replicase on the DNA template in its various conformational states.


Assuntos
DNA Polimerase III/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Replicação do DNA/genética , Replicação do DNA/fisiologia , DNA de Cadeia Simples/biossíntese , DNA de Cadeia Simples/metabolismo , Estabilidade Enzimática/genética , Escherichia coli/genética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA