Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(1): 327-336, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36661509

RESUMO

The COVID-19 (Coronavirus Disease 2019), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), severely affects mainly individuals with pre-existing comorbidities. Here our aim was to correlate the mTOR (mammalian/mechanistic Target of Rapamycin) and autophagy pathways with the disease severity. Through western blotting and RNA analysis, we found increased mTOR signaling and suppression of genes related to autophagy, lysosome, and vesicle fusion in Vero E6 cells infected with SARS-CoV-2 as well as in transcriptomic data mining of bronchoalveolar epithelial cells from severe COVID-19 patients. Immunofluorescence co-localization assays also indicated that SARS-CoV-2 colocalizes within autophagosomes but not with a lysosomal marker. Our findings indicate that SARS-CoV-2 can benefit from compromised autophagic flux and inhibited exocytosis in individuals with chronic hyperactivation of mTOR signaling.

2.
Gut Microbes ; 13(1): 1-9, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33550892

RESUMO

Microbiota-derived molecules called short-chain fatty acids (SCFAs) play a key role in the maintenance of the intestinal barrier and regulation of immune response during infectious conditions. Recent reports indicate that SARS-CoV-2 infection changes microbiota and SCFAs production. However, the relevance of this effect is unknown. In this study, we used human intestinal biopsies and intestinal epithelial cells to investigate the impact of SCFAs in the infection by SARS-CoV-2. SCFAs did not change the entry or replication of SARS-CoV-2 in intestinal cells. These metabolites had no effect on intestinal cells' permeability and presented only minor effects on the production of anti-viral and inflammatory mediators. Together our findings indicate that the changes in microbiota composition of patients with COVID-19 and, particularly, of SCFAs do not interfere with the SARS-CoV-2 infection in the intestine.


Assuntos
COVID-19/virologia , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/virologia , Adulto , Idoso , Células CACO-2 , Colo/virologia , Células Epiteliais/virologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Carga Viral , Internalização do Vírus , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA