Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 61(12): 3363-3385, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37672143

RESUMO

Automatic seizure detection and prediction using clinical Electroencephalograms (EEGs) are challenging tasks due to factors such as low Signal-to-Noise Ratios (SNRs), high variance in epileptic seizures among patients, and limited clinical data constraints. To overcome these challenges, this paper presents two approaches for EEG signal classification. One of these approaches depends on Machine Learning (ML) tools. The used features are different types of entropy, higher-order statistics, and sub-band energies in the Hilbert Marginal Spectrum (HMS) domain. The classification is performed using Support Vector Machine (SVM), Logistic Regression (LR), and K-Nearest Neighbor (KNN) classifiers. Both seizure detection and prediction scenarios are considered. The second approach depends on spectrograms of EEG signal segments and a Convolutional Neural Network (CNN)-based residual learning model. We use 10000 spectrogram images for each class. In this approach, it is possible to perform both seizure detection and prediction in addition to a 3-state classification scenario. Both approaches are evaluated on the Children's Hospital Boston and the Massachusetts Institute of Technology (CHB-MIT) dataset, which contains 24 EEG recordings for 6 males and 18 females. The results obtained for the HMS-based model showed an accuracy of 100%. The CNN-based model achieved accuracies of 97.66%, 95.59%, and 94.51% for Seizure (S) versus Pre-Seizure (PS), Non-Seizure (NS) versus S, and NS versus S versus PS classes, respectively. These results demonstrate that the proposed approaches can be effectively used for seizure detection and prediction. They outperform the state-of-the-art techniques for automatic seizure detection and prediction. Block diagram of proposed epileptic seizure detection method using HMS with different classifiers.


Assuntos
Epilepsia , Convulsões , Masculino , Criança , Feminino , Humanos , Convulsões/diagnóstico , Epilepsia/diagnóstico , Redes Neurais de Computação , Eletroencefalografia/métodos , Máquina de Vetores de Suporte , Processamento de Sinais Assistido por Computador , Algoritmos
2.
Diagnostics (Basel) ; 13(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37046537

RESUMO

Acute lower respiratory infection is a leading cause of death in developing countries. Hence, progress has been made for early detection and treatment. There is still a need for improved diagnostic and therapeutic strategies, particularly in resource-limited settings. Chest X-ray and computed tomography (CT) have the potential to serve as effective screening tools for lower respiratory infections, but the use of artificial intelligence (AI) in these areas is limited. To address this gap, we present a computer-aided diagnostic system for chest X-ray and CT images of several common pulmonary diseases, including COVID-19, viral pneumonia, bacterial pneumonia, tuberculosis, lung opacity, and various types of carcinoma. The proposed system depends on super-resolution (SR) techniques to enhance image details. Deep learning (DL) techniques are used for both SR reconstruction and classification, with the InceptionResNetv2 model used as a feature extractor in conjunction with a multi-class support vector machine (MCSVM) classifier. In this paper, we compare the proposed model performance to those of other classification models, such as Resnet101 and Inceptionv3, and evaluate the effectiveness of using both softmax and MCSVM classifiers. The proposed system was tested on three publicly available datasets of CT and X-ray images and it achieved a classification accuracy of 98.028% using a combination of SR and InceptionResNetv2. Overall, our system has the potential to serve as a valuable screening tool for lower respiratory disorders and assist clinicians in interpreting chest X-ray and CT images. In resource-limited settings, it can also provide a valuable diagnostic support.

3.
J Ambient Intell Humaniz Comput ; 13(9): 4477-4492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280854

RESUMO

This paper explores the issue of COVID-19 detection from X-ray images. X-ray images, in general, suffer from low quality and low resolution. That is why the detection of different diseases from X-ray images requires sophisticated algorithms. First of all, machine learning (ML) is adopted on the features extracted manually from the X-ray images. Twelve classifiers are compared for this task. Simulation results reveal the superiority of Gaussian process (GP) and random forest (RF) classifiers. To extend the feasibility of this study, we have modified the feature extraction strategy to give deep features. Four pre-trained models, namely ResNet50, ResNet101, Inception-v3 and InceptionResnet-v2 are adopted in this study. Simulation results prove that InceptionResnet-v2 and ResNet101 with GP classifier achieve the best performance. Moreover, transfer learning (TL) is also introduced in this paper to enhance the COVID-19 detection process. The selected classification hierarchy is also compared with a convolutional neural network (CNN) model built from scratch to prove its quality of classification. Simulation results prove that deep features and TL methods provide the best performance that reached 100% for accuracy.

4.
Int J Numer Method Biomed Eng ; 38(6): e3573, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35077027

RESUMO

Electroencephalography (EEG) is among the main tools used for analyzing and diagnosing epilepsy. The manual analysis of EEG must be conducted by highly trained clinicians or neuro-physiologists; a process that is considered to have a comparatively low inter-rater agreement. Furthermore, the new data interpretation consumes an excessive amount of time and resources. Hence, an automatic seizure detection and prediction system can improve the quality of patient care in terms of shortening the diagnosis period, reducing manual errors, and automatically detecting debilitating events. Moreover, for patient treatment, it is important to alert the patients of epilepsy seizures prior to seizure occurrence. Various distinguished studies presented good solutions for two-class seizure detection problems with binary classification scenarios. To deal with these challenges, this paper puts forward effective approaches for EEG signal classification for normal, pre-ictal, and ictal activities. Three models are presented for the classification task. Two of them are patient-specific, while the third one is patient non-specific, which makes it better for the general classification tasks. The two-class classification is implemented between normal and pre-ictal activities for seizure prediction and between normal and ictal activities for seizure detection. A more generalized three-class classification framework is considered to identify all EEG signal activities. The first model depends on a Convolutional Neural Network (CNN) with residual blocks. It contains thirteen layers with four residual learning blocks. It works on spectrograms of EEG signal segments. The second model depends on a CNN with three layers. It also works on spectrograms. On the other hand, the third model depends on Phase Space Reconstruction (PSR) to eliminate the limitations of the spectrograms used in the first models. A five-layer CNN is used with this strategy. The advantage of the PSR is the direct projection from the time domain, which keeps the main trend of different signal activities. The third model deals with all signal activities, and it was tested for all patients of the CHB-MIT dataset. It has a superior performance compared to the first models and the state-of-the-art models.


Assuntos
Aprendizado Profundo , Epilepsia , Eletroencefalografia , Epilepsia/diagnóstico , Humanos , Redes Neurais de Computação , Convulsões/diagnóstico
5.
Microsc Res Tech ; 84(11): 2504-2516, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34121273

RESUMO

This article is mainly concerned with COVID-19 diagnosis from X-ray images. The number of cases infected with COVID-19 is increasing daily, and there is a limitation in the number of test kits needed in hospitals. Therefore, there is an imperative need to implement an efficient automatic diagnosis system to alleviate COVID-19 spreading among people. This article presents a discussion of the utilization of convolutional neural network (CNN) models with different learning strategies for automatic COVID-19 diagnosis. First, we consider the CNN-based transfer learning approach for automatic diagnosis of COVID-19 from X-ray images with different training and testing ratios. Different pre-trained deep learning models in addition to a transfer learning model are considered and compared for the task of COVID-19 detection from X-ray images. Confusion matrices of these studied models are presented and analyzed. Considering the performance results obtained, ResNet models (ResNet18, ResNet50, and ResNet101) provide the highest classification accuracy on the two considered datasets with different training and testing ratios, namely 80/20, 70/30, 60/40, and 50/50. The accuracies obtained using the first dataset with 70/30 training and testing ratio are 97.67%, 98.81%, and 100% for ResNet18, ResNet50, and ResNet101, respectively. For the second dataset, the reported accuracies are 99%, 99.12%, and 99.29% for ResNet18, ResNet50, and ResNet101, respectively. The second approach is the training of a proposed CNN model from scratch. The results confirm that training of the CNN from scratch can lead to the identification of the signs of COVID-19 disease.


Assuntos
COVID-19 , Aprendizado Profundo , Teste para COVID-19 , Humanos , Redes Neurais de Computação , Radiografia Torácica , SARS-CoV-2
6.
Appl Opt ; 60(15): 4291-4298, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34143115

RESUMO

Data offloading is a promising low-cost and power-efficient solution for the expected high demands for high-speed connectivity in the near future. We investigate offloading efficiency in a cellular/light fidelity (LiFi) network. This offloading efficiency is a measure of the ratio of traffic carried by the LiFi network to the total traffic carried by both LiFi and cellular networks. We consider the two scenarios of opportunistic and delayed offloading. Effects of user density, user mobility, LiFi-signal blocking, and channel characteristics are investigated. We use Zemax to simulate LiFi channels in the proposed model. Based on our results, delayed offloading can achieve up to 60% offloading efficiency while opportunistic offloading achieves up to 18% offloading efficiency.

7.
Sensors (Basel) ; 19(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841569

RESUMO

Recently, vehicular networks have emerged to facilitate intelligent transportation systems (ITS). They enable vehicles to communicate with each other in order to provide various services such as traffic safety, autonomous driving, and entertainments. The vehicle-to-vehicle (V2V) communication channel is doubly selective, where the channel changes within the transmission bandwidth and the frame duration. This necessitates robust algorithms to provide reliable V2V communications. In this paper, we propose a scheme that provides joint adaptive modulation, coding and payload length selection (AMCPLS) for V2V communications. Our AMCPLS scheme selects both the modulation and coding scheme (MCS) and the payload length of transmission frames for V2V communication links, according to the V2V channel condition. Our aim is to achieve both reliability and spectrum efficiency. Our proposed AMCPLS scheme improves the V2V effective throughput performance while satisfying a predefined frame error rate (FER). Furthermore, we present a deep learning approach that exploits deep convolutional neural networks (DCNN) for implementing the proposed AMCPLS. Simulation results reveal that the proposed DCNN-based AMCPLS approach outperforms other competing machine learning algorithms such as k-nearest neighbors (k-NN) and support vector machines (SVM) in terms of FER, effective throughput, and prediction time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA