Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Commun ; 15(1): 2796, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555298

RESUMO

The Y-linked SRY gene initiates mammalian testis-determination. However, how the expression of SRY is regulated remains elusive. Here, we demonstrate that a conserved steroidogenic factor-1 (SF-1)/NR5A1 binding enhancer is required for appropriate SRY expression to initiate testis-determination in humans. Comparative sequence analysis of SRY 5' regions in mammals identified an evolutionary conserved SF-1/NR5A1-binding motif within a 250 bp region of open chromatin located 5 kilobases upstream of the SRY transcription start site. Genomic analysis of 46,XY individuals with disrupted testis-determination, including a large multigenerational family, identified unique single-base substitutions of highly conserved residues within the SF-1/NR5A1-binding element. In silico modelling and in vitro assays demonstrate the enhancer properties of the NR5A1 motif. Deletion of this hemizygous element by genome-editing, in a novel in vitro cellular model recapitulating human Sertoli cell formation, resulted in a significant reduction in expression of SRY. Therefore, human NR5A1 acts as a regulatory switch between testis and ovary development by upregulating SRY expression, a role that may predate the eutherian radiation. We show that disruption of an enhancer can phenocopy variants in the coding regions of SRY that cause human testis dysgenesis. Since disease causing variants in enhancers are currently rare, the regulation of gene expression in testis-determination offers a paradigm to define enhancer activity in a key developmental process.


Assuntos
Disgenesia Gonadal , Testículo , Animais , Feminino , Humanos , Masculino , Linhagem Celular , Mamíferos/genética , Sequências Reguladoras de Ácido Nucleico , Células de Sertoli/metabolismo , Proteína da Região Y Determinante do Sexo/genética , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Testículo/metabolismo
2.
Sci Adv ; 9(1): eabn9793, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598988

RESUMO

During embryonic development, mutually antagonistic signaling cascades determine gonadal fate toward a testicular or ovarian identity. Errors in this process result in disorders of sex development (DSDs), characterized by discordance between chromosomal, gonadal, and anatomical sex. The absence of an appropriate, accessible in vitro system is a major obstacle in understanding mechanisms of sex-determination/DSDs. Here, we describe protocols for differentiation of mouse and human pluripotent cells toward gonadal progenitors. Transcriptomic analysis reveals that the in vitro-derived murine gonadal cells are equivalent to embryonic day 11.5 in vivo progenitors. Using similar conditions, Sertoli-like cells derived from 46,XY human induced pluripotent stem cells (hiPSCs) exhibit sustained expression of testis-specific genes, secrete anti-Müllerian hormone, migrate, and form tubular structures. Cells derived from 46,XY DSD female hiPSCs, carrying an NR5A1 variant, show aberrant gene expression and absence of tubule formation. CRISPR-Cas9-mediated variant correction rescued the phenotype. This is a robust tool to understand mechanisms of sex determination and model DSDs.


Assuntos
Disgenesia Gonadal 46 XY , Células-Tronco Pluripotentes Induzidas , Masculino , Animais , Camundongos , Humanos , Feminino , Reprogramação Celular/genética , Gônadas , Disgenesia Gonadal 46 XY/genética
3.
Cell Death Differ ; 29(12): 2347-2361, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35624308

RESUMO

Primary ovarian insufficiency (POI) causes female infertility by abolishing normal ovarian function. Although its genetic etiology has been extensively investigated, most POI cases remain unexplained. Using whole-exome sequencing, we identified a homozygous variant in RAD51B -(c.92delT) in two sisters with POI. In vitro studies revealed that this variant leads to translation reinitiation at methionine 64. Here, we show that this is a pathogenic hypomorphic variant in a mouse model. Rad51bc.92delT/c.92delT mice exhibited meiotic DNA repair defects due to RAD51 and HSF2BP/BMRE1 accumulation in the chromosome axes leading to a reduction in the number of crossovers. Interestingly, the interaction of RAD51B-c.92delT with RAD51C and with its newly identified interactors RAD51 and HELQ was abrogated or diminished. Repair of mitomycin-C-induced chromosomal aberrations was impaired in RAD51B/Rad51b-c.92delT human and mouse somatic cells in vitro and in explanted mouse bone marrow cells. Accordingly, Rad51b-c.92delT variant reduced replication fork progression of patient-derived lymphoblastoid cell lines and pluripotent reprogramming efficiency of primary mouse embryonic fibroblasts. Finally, Rad51bc.92delT/c.92delT mice displayed increased incidence of pituitary gland hyperplasia. These results provide new mechanistic insights into the role of RAD51B not only in meiosis but in the maintenance of somatic genome stability.


Assuntos
Proteínas de Ligação a DNA , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Camundongos , Aberrações Cromossômicas , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Meiose , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo
4.
Best Pract Res Clin Endocrinol Metab ; 36(1): 101633, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35249806

RESUMO

In 46,XY men, testis is determined by a genetic network(s) that both promotes testis formation and represses ovarian development. Disruption of this process results in a lack of testis-determination and affected individuals present with 46,XY gonadal dysgenesis (GD), a part of the spectrum of Disorders/Differences of Sex Development/Determination (DSD). A minority of all cases of GD are associated with pathogenic variants in key players of testis-determination, SRY, SOX9, MAP3K1 and NR5A1. However, most of the cases remain unexplained. Recently, unbiased exome sequencing approaches have revealed new genes and loci that may cause 46,XY GD. We critically evaluate the evidence to support causality of these factors and describe how functional studies are continuing to improve our understanding of genotype-phenotype relationships in genes that are established causes of GD. As genomic data continues to be generated from DSD cohorts, we propose several recommendations to help interpret the data and establish causality.


Assuntos
Redes Reguladoras de Genes , Disgenesia Gonadal 46 XY , Feminino , Disgenesia Gonadal 46 XY/genética , Humanos , Masculino , Mutação , Desenvolvimento Sexual/genética , Testículo
5.
Hum Genet ; 139(11): 1455-1470, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32504121

RESUMO

In humans, pathogenic variants in the DHH gene underlie cases of 46,XY gonadal dysgenesis. DHH is part of the Hedgehog family of proteins, which require extensive processing, including self-cleavage of the precursor for efficient signalling. In our work, we have assessed the effect of several human DHH pathogenic variants involved in recessive complete or partial gonadal dysgenesis, on protein processing and sub-cellular localization. We found that a subset of variants was unable to perform self-cleavage, which correlated albeit not perfectly with an altered subcellular localization of the resulting proteins. For the processing-proficient variants, we used structural modelling tools and molecular dynamic (MD) simulations to predict the potential impact of the variants on protein conformation and/or interaction with partners. Our study contributes to a better understanding of the molecular mechanisms involved in DHH dysfunction leading to 46,XY disorders of sex development.


Assuntos
Predisposição Genética para Doença/genética , Disgenesia Gonadal 46 XY/genética , Proteínas Hedgehog/genética , Mutação/genética , Linhagem Celular Tumoral , Feminino , Células HeLa , Humanos , Masculino , Simulação de Dinâmica Molecular , Conformação Proteica , Proteólise
6.
Mol Cell Proteomics ; 18(7): 1307-1319, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30992313

RESUMO

The PI3K/AKT signaling pathway is known to regulate a broad range of cellular processes, and it is often altered in several types of cancers. Recently, somatic AKT1 mutations leading to a strong activation of this kinase have been reported in juvenile granulosa cell tumors. However, the molecular role of AKT1 in the supporting cell lineage of the ovary is still poorly understood. To get insights into its function in such cells, we depleted Akt1 in murine primary granulosa cells and assessed the molecular consequences at both the transcript and protein levels. We were able to corroborate the involvement of AKT1 in the regulation of metabolism, apoptosis, cell cycle, or cytoskeleton dynamics in this ovarian cell type. Consistently, we showed in established granulosa cells that depletion of Akt1 provoked altered directional persistent migration and increased its velocity. This study also allowed us to put forward new direct and indirect targets of the kinase. Indeed, a series of proteins involved in intracellular transport and mitochondrial physiology were significantly affected by Akt1 depletion. Using in silico analyses, we also propose a set of kinases and transcription factors that can mediate the action of AKT1 on the deregulated transcripts and proteins. Taken altogether, our results provide a resource of direct and indirect AKT1 targets in granulosa cells and may help understand its roles in this ovarian cell type.


Assuntos
Células da Granulosa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Movimento Celular , Feminino , Regulação da Expressão Gênica , Genoma , Camundongos , Peptídeos/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
7.
PLoS Genet ; 15(2): e1007909, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30735494

RESUMO

Gonad differentiation is a crucial step conditioning the future fertility of individuals and most of the master genes involved in this process have been investigated in detail. However, transcriptomic analyses of developing gonads from different animal models have revealed that hundreds of genes present sexually dimorphic expression patterns. DMXL2 was one of these genes and its function in mammalian gonads was unknown. We therefore investigated the phenotypes of total and gonad-specific Dmxl2 knockout mouse lines. The total loss-of-function of Dmxl2 was lethal in neonates, with death occurring within 12 hours of birth. Dmxl2-knockout neonates were weak and did not feed. They also presented defects of olfactory information transmission and severe hypoglycemia, suggesting that their premature death might be due to global neuronal and/or metabolic deficiencies. Dmxl2 expression in the gonads increased after birth, during follicle formation in females and spermatogenesis in males. DMXL2 was detected in both the supporting and germinal cells of both sexes. As Dmxl2 loss-of-function was lethal, only limited investigations of the gonads of Dmxl2 KO pups were possible. They revealed no major defects at birth. The gonadal function of Dmxl2 was then assessed by conditional deletions of the gene in gonadal supporting cells, germinal cells, or both. Conditional Dmxl2 ablation in the gonads did not impair fertility in males or females. By contrast, male mice with Dmxl2 deletions, either throughout the testes or exclusively in germ cells, presented a subtle testicular phenotype during the first wave of spermatogenesis that was clearly detectable at puberty. Indeed, Dmxl2 loss-of-function throughout the testes or in germ cells only, led to sperm counts more than 60% lower than normal and defective seminiferous tubule architecture. Transcriptomic and immunohistochemichal analyses on these abnormal testes revealed a deregulation of Sertoli cell phagocytic activity related to germ cell apoptosis augmentation. In conclusion, we show that Dmxl2 exerts its principal function in the testes at the onset of puberty, although its absence does not compromise male fertility in mice.


Assuntos
Proteínas do Tecido Nervoso/genética , Espermatogênese/genética , Espermatozoides/fisiologia , Animais , Apoptose/genética , Feminino , Fertilidade/genética , Células Germinativas/fisiologia , Gônadas/fisiologia , Infertilidade Feminina/genética , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Túbulos Seminíferos/fisiologia , Células de Sertoli/fisiologia , Testículo/fisiologia
8.
Hum Mol Genet ; 26(16): 3161-3166, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28541421

RESUMO

Premature ovarian insufficiency (POI) is a frequent pathology that affects women under 40 years of age, characterized by an early cessation of menses and high FSH levels. Despite recent progresses in molecular diagnosis, the etiology of POI remains idiopathic in most cases. Whole-exome sequencing of members of a Colombian family affected by POI allowed us to identify a novel homozygous donor splice-site mutation in the meiotic gene MSH4 (MutS Homolog 4). The variant followed a strict mendelian segregation within the family and was absent in a cohort of 135 women over 50 years of age without history of infertility, from the same geographical region as the affected family. Exon trapping experiments showed that the splice-site mutation induced skipping of exon 17. At the protein level, the mutation p.Ile743_Lys785del is predicted to lead to the ablation of the highly conserved Walker B motif of the ATP-binding domain, thus inactivating MSH4. Our study describes the first MSH4 mutation associated with POI and increases the number of meiotic/DNA repair genes formally implicated as being responsible for this condition.


Assuntos
Proteínas de Ciclo Celular/genética , Mutação , Insuficiência Ovariana Primária/genética , Adulto , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Estudos de Coortes , Éxons , Feminino , Homozigoto , Humanos , Menopausa Precoce/genética , Linhagem , Sítios de Splice de RNA , Sequenciamento do Exoma
9.
FEBS Open Bio ; 6(1): 4-15, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-27047737

RESUMO

Three genes of the prion protein gene family are expressed in gonads. Comparative analyses of their expression patterns in mice and goats revealed constant expression of PRNP and SPRN in both species and in both male and female gonads, but with a weaker expression of SPRN. By contrast, expression of PRND was found to be sex-dimorphic, in agreement with its role in spermatogenesis. More importantly, our study revealed that PRND seems to be a key marker of foetal Leydig cells specifically in goats, suggesting a yet unknown role for its encoded protein Doppel during gonadal differentiation in nonrodent mammals.

10.
Biol Reprod ; 91(6): 153, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25395674

RESUMO

FOXL2 loss of function in goats leads to the early transdifferentiation of ovaries into testes, then to the full sex reversal of XX homozygous mutants. By contrast, Foxl2 loss of function in mice induces an arrest of follicle formation after birth, followed by complete female sterility. In order to understand the molecular role of FOXL2 during ovarian differentiation in the goat species, putative FOXL2 target genes were determined at the earliest stage of gonadal sex-specific differentiation by comparing the mRNA profiles of XX gonads expressing the FOXL2 protein or not. Of these 163 deregulated genes, around two-thirds corresponded to testicular genes that were up-regulated when FOXL2 was absent, and only 19 represented female-associated genes, down-regulated in the absence of FOXL2. FOXL2 should therefore be viewed as an antitestis gene rather than as a female-promoting gene. In particular, the key testis-determining gene DMRT1 was found to be up-regulated ahead of SOX9, thus suggesting in goats that SOX9 primary up-regulation may require DMRT1. Overall, our results equated to FOXL2 being an antitestis gene, allowing us to propose an alternative model for the sex-determination process in goats that differs slightly from that demonstrated in mice.


Assuntos
Transtornos Testiculares 46, XX do Desenvolvimento Sexual/genética , Fatores de Transcrição Forkhead/genética , Genitália Feminina/metabolismo , Cabras/fisiologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição/genética , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/veterinária , Animais , Animais Geneticamente Modificados , Transdiferenciação Celular , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genitália Feminina/embriologia , Cabras/genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Ovário/metabolismo , Processos de Determinação Sexual/genética , Testículo/metabolismo , Regulação para Cima
11.
Curr Biol ; 24(4): 404-8, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24485832

RESUMO

The origin of sex reversal in XX goats homozygous for the polled intersex syndrome (PIS) mutation was unclear because of the complexity of the mutation that affects the transcription of both FOXL2 and several long noncoding RNAs (lncRNAs). Accumulating evidence suggested that FOXL2 could be the sole gene of the PIS locus responsible for XX sex reversal, the lncRNAs being involved in transcriptional regulation of FOXL2. In this study, using zinc-finger nuclease-directed mutagenesis, we generated several fetuses, of which one XX individual bears biallelic mutations of FOXL2. Our analysis demonstrates that FOXL2 loss of function dissociated from loss of lncRNA expression is sufficient to cause an XX female-to-male sex reversal in the goat model and, as in the mouse model, an agenesis of eyelids. Both developmental defects were reproduced in two newborn animals cloned from the XX FOXL2(-/-) fibroblasts. These results therefore identify FOXL2 as a bona fide female sex-determining gene in the goat. They also highlight a stage-dependent role of FOXL2 in the ovary, different between goats and mice, being important for fetal development in the former but for postnatal maintenance in the latter.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Cabras/metabolismo , Processos de Determinação Sexual , Animais , Feminino , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Cabras/embriologia , Cabras/genética , Masculino , Ovário/embriologia , Ovário/metabolismo , Testículo/embriologia , Testículo/metabolismo , Cromossomo X , Cromossomo Y
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA