Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Elife ; 102021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34783657

RESUMO

During development, neurites and synapses segregate into specific neighborhoods or layers within nerve bundles. The developmental programs guiding placement of neurites in specific layers, and hence their incorporation into specific circuits, are not well understood. We implement novel imaging methods and quantitative models to document the embryonic development of the C. elegans brain neuropil, and discover that differential adhesion mechanisms control precise placement of single neurites onto specific layers. Differential adhesion is orchestrated via developmentally regulated expression of the IgCAM SYG-1, and its partner ligand SYG-2. Changes in SYG-1 expression across neuropil layers result in changes in adhesive forces, which sort SYG-2-expressing neurons. Sorting to layers occurs, not via outgrowth from the neurite tip, but via an alternate mechanism of retrograde zippering, involving interactions between neurite shafts. Our study indicates that biophysical principles from differential adhesion govern neurite placement and synaptic specificity in vivo in developing neuropil bundles.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Adesão Celular/genética , Neuritos/fisiologia , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Adesão Celular/fisiologia , Regulação da Expressão Gênica , Neurônios/fisiologia , Sinapses
2.
Dev Dyn ; 249(10): 1285-1295, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32406957

RESUMO

BACKGROUND: Semaphorin6A (Sema6A) and its PlexinA2 (PlxnA2) receptor canonically function as repulsive axon guidance cues. To understand downstream signaling mechanisms, we performed a microarray screen and identified the "clutch molecule" shootin-1 (shtn-1) as a transcriptionally repressed target. Shtn-1 is a key proponent of cell migration and neuronal polarization and must be regulated during nervous system development. The mechanisms of Shtn-1 regulation and the phenotypic consequences of loss of repression are poorly understood. RESULTS: We demonstrate shtn-1 overexpression results in impaired migration of the optic vesicles, lack of retinal pigmented epithelium, and pathfinding errors of retinotectal projections. We also observed patterning defects in the peripheral nervous system. Importantly, these phenotypes were rescued by overexpressing PlxnA2. CONCLUSIONS: We demonstrate a functional role for repression of shtn-1 by PlxnA2 in development of the eyes and peripheral nervous system in zebrafish. These results demonstrate that careful regulation of shtn-1 is critical for development of the nervous system.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/fisiologia , Sistema Nervoso/embriologia , Receptores de Superfície Celular/fisiologia , Semaforinas/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Axônios/fisiologia , Padronização Corporal , Movimento Celular , Proteínas do Citoesqueleto/genética , Humanos , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Sistema Nervoso Periférico/fisiologia , Fenótipo , Receptores de Superfície Celular/genética , Epitélio Pigmentado da Retina/fisiologia , Semaforinas/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
3.
Gene Expr Patterns ; 31: 1-6, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30468770

RESUMO

Protein kinase A (PKA), also known as cAMP dependent protein kinase, is an essential component of many signaling pathways, many of which regulate key developmental processes. Inactive PKA is a tetrameric holoenzyme, comprised of two catalytic (PRKAC), and two regulatory subunits. Upon cAMP binding, the catalytic subunits are released and thereby activated. There are multiple isoforms of PKA catalytic subunits, but their individual roles are not well understood. In order to begin studying their roles in zebrafish development, it is first necessary to identify the spatial and temporal expression profiles for each prkac subunit. Here we evaluate the expression profiles for the four zebrafish prkacs: prkacαa, αb, ßa, and ßb, at key developmental time points: 24, 48 and 72 h post fertilization. We show that zebrafish prkacs are expressed throughout the developing nervous system, each showing unique expression patterns. This body of work will inform future functional studies into the roles of PKA during development.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Peixe-Zebra/genética , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
4.
FEBS J ; 285(1): 72-86, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091353

RESUMO

Plexins (Plxns) are semaphorin (Sema) receptors that play important signaling roles, particularly in the developing nervous system and vasculature. Sema-Plxn signaling regulates cellular processes such as cytoskeletal dynamics, proliferation, and differentiation. However, the receptor-proximal signaling mechanisms driving Sema-Plxn signal transduction are only partially understood. Plxn tyrosine phosphorylation is thought to play an important role in these signaling events as receptor and nonreceptor tyrosine kinases have been shown to interact with Plxn receptors. The Src family kinase Fyn can induce the tyrosine phosphorylation of PlxnA1 and PlxnA2. However, the Fyn-dependent phosphorylation sites on these receptors have not been identified. Here, using mass spectrometry-based approaches, we have identified highly conserved, Fyn-induced PlexinA (PlxnA) tyrosine phosphorylation sites. Mutation of these sites to phenylalanine results in significantly decreased Fyn-dependent PlxnA tyrosine phosphorylation. Furthermore, in contrast to wild-type human PLXNA2 mRNA, mRNA harboring these point mutations cannot rescue eye developmental defects when coinjected with a plxnA2 morpholino in zebrafish embryos. Together these data suggest that Fyn-dependent phosphorylation at two critical tyrosines is a key feature of vertebrate PlxnA1 and PlxnA2 signal transduction.


Assuntos
Olho/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de Superfície Celular/metabolismo , Tirosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Olho/embriologia , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Fosforilação , Receptores de Superfície Celular/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Tirosina/genética , Peixe-Zebra
5.
Gene Expr Patterns ; 27: 56-66, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29107805

RESUMO

Plexins (Plxns) and Semaphorins (Semas) are key signaling molecules that regulate many aspects of development. Plxns are a family of transmembrane protein receptors that are activated upon extracellular binding by Semas. Activated Plxns trigger intracellular signaling cascades, which regulate a range of developmental processes, including axon guidance, neuronal positioning and vasculogenesis. Semas are a large family of both transmembrane and secreted signaling molecules, and show subtype specific binding to different Plxn family members. Each Plxn can play different roles in development, and so tightly regulated temporal and spatial expression of receptor subtypes is critical to ensure appropriate signaling. Here we elucidate the expression profiles of the plxnA family, plxnA1a, A1b, A2, A3 and A4 at 18, 24, 36, 48, 60 and 72 h post fertilization in the developing zebrafish. We show that PlxnA family members are expressed in neuronal tissues during zebrafish development, but exhibit key differences in expression within these tissues. We also highlight that plxnA1 has two genes in zebrafish, A1a and A1b, which show divergences in expression patterns during early development.


Assuntos
Moléculas de Adesão Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/genética , Animais , Moléculas de Adesão Celular/genética , Células Cultivadas , Hibridização In Situ , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Filogenia , Transdução de Sinais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
6.
Dev Dyn ; 246(7): 539-549, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28440030

RESUMO

BACKGROUND: Semaphorin (Sema)/Plexin (Plxn) signaling is important for many aspects of neuronal development, however, the transcriptional regulation imposed by this signaling pathway is unknown. Previously, we identified an essential role for Sema6A/PlxnA2 signaling in regulating proliferation and cohesion of retinal precursor cells (RPCs) during early eye development. This study used RNA isolated from control, Sema6A-deficient and PlxnA2-deficient zebrafish embryos in a microarray analysis to identify genes that were differentially expressed when this signaling pathway was disrupted. RESULTS: We uncovered a set of 58 transcripts, and all but 1 were up-regulated in both sema6A and plxnA2 morphants. We validated gene expression changes in subset of candidates that are suggested to be involved in proliferation, migration or neuronal positioning. We further functionally evaluated one gene, rasl11b, as contributing to disrupted proliferation in sema6A and plxna2 morphants. Our results suggest rasl11b negatively regulates proliferation of RPCs in the developing zebrafish eye. CONCLUSIONS: Microarray analysis has generated a resource of target genes downstream of Sema6A/PlxnA2 signaling, which can be further investigated to elucidate the downstream effects of this well-studied neuronal and vascular guidance signaling pathway. Developmental Dynamics 246:539-549, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Movimento Celular , Proliferação de Células , Olho/embriologia , Olho/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Retina/citologia , Células-Tronco , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA