Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Curr Biol ; 33(12): 2383-2396.e5, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37236182

RESUMO

The global surge in demand for metals such as cobalt and nickel has created unprecedented interest in deep-sea habitats with mineral resources. The largest area of activity is a 6 million km2 region known as the Clarion-Clipperton Zone (CCZ) in the central and eastern Pacific, regulated by the International Seabed Authority (ISA). Baseline biodiversity knowledge of the region is crucial to effective management of environmental impact from potential deep-sea mining activities, but until recently this has been almost completely lacking. The rapid growth in taxonomic outputs and data availability for the region over the last decade has allowed us to conduct the first comprehensive synthesis of CCZ benthic metazoan biodiversity for all faunal size classes. Here we present the CCZ Checklist, a biodiversity inventory of benthic metazoa vital to future assessments of environmental impacts. An estimated 92% of species identified from the CCZ are new to science (436 named species from a total of 5,578 recorded). This is likely to be an overestimate owing to synonyms in the data but is supported by analysis of recent taxonomic studies suggesting that 88% of species sampled in the region are undescribed. Species richness estimators place total CCZ metazoan benthic diversity at 6,233 (+/-82 SE) species for Chao1, and 7,620 (+/-132 SE) species for Chao2, most likely representing lower bounds of diversity in the region. Although uncertainty in estimates is high, regional syntheses become increasingly possible as comparable datasets accumulate. These will be vital to understanding ecological processes and risks of biodiversity loss.


Assuntos
Biodiversidade , Invertebrados , Oceanos e Mares , Animais , Invertebrados/classificação , Biologia Marinha , Oceano Pacífico , Sedimentos Geológicos
2.
Parasit Vectors ; 16(1): 97, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918965

RESUMO

BACKGROUND: Despite successful control efforts in China over the past 60 years, zoonotic schistosomiasis caused by Schistosoma japonicum remains a threat with transmission ongoing and the risk of localised resurgences prompting calls for a novel integrated control strategy, with an anti-schistosome vaccine as a core element. Anti-schistosome vaccine development and immunisation attempts in non-human mammalian host species, intended to interrupt transmission, and utilising various antigen targets, have yielded mixed success, with some studies highlighting variation in schistosome antigen coding genes (ACGs) as possible confounders of vaccine efficacy. Thus, robust selection of target ACGs, including assessment of their genetic diversity and antigenic variability, is paramount. Tetraspanins (TSPs), a family of tegument-surface antigens in schistosomes, interact directly with the host's immune system and are promising vaccine candidates. Here, for the first time to our knowledge, diversity in S. japonicum TSPs (SjTSPs) and the impact of diversifying selection and sequence variation on immunogenicity in these protiens were evaluated. METHODS: SjTSP sequences, representing parasite populations from seven provinces across China, were gathered by baiting published short-read NGS data and were analysed using in silico methods to measure sequence variation and selection pressures and predict the impact of selection on variation in antigen protein structure, function and antigenic propensity. RESULTS: Here, 27 SjTSPs were identified across three subfamilies, highlighting the diversity of TSPs in S. japonicum. Considerable variation was demonstrated for several SjTSPs between geographical regions/provinces, revealing that episodic, diversifying positive selection pressures promote amino acid variation/variability in the large extracellular loop (LEL) domain of certain SjTSPs. Accumulating polymorphisms in the LEL domain of SjTSP-2, -8 and -23 led to altered structural, functional and antibody binding characteristics, which are predicted to impact antibody recognition and possibly blunt the host's ability to respond to infection. Such changes, therefore, appear to represent a mechanism utilised by S. japonicum to evade the host's immune system. CONCLUSION: Whilst the genetic and antigenic geographic variability observed amongst certain SjTSPs could present challenges to vaccine development, here we demonstrate conservation amongst SjTSP-1, -13 and -14, revealing their likely improved utility as efficacious vaccine candidates. Importantly, our data highlight that robust evaluation of vaccine target variability in natural parasite populations should be a prerequisite for anti-schistosome vaccine development.


Assuntos
Schistosoma japonicum , Esquistossomose Japônica , Esquistossomose , Vacinas , Animais , Humanos , Proteínas de Helminto/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo , Esquistossomose Japônica/prevenção & controle , Esquistossomose Japônica/parasitologia , Mamíferos
3.
Cell Rep ; 38(13): 110611, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35354052

RESUMO

The HIV-1 Envelope glycoprotein (Env) is the sole target for broadly neutralizing antibodies (bnAbs). Env is heavily glycosylated with host-derived N-glycans, and many bnAbs bind to, or are dependent upon, Env glycans for neutralization. Although glycan-binding bnAbs are frequently detected in HIV-infected individuals, attempts to elicit them have been unsuccessful because of the poor immunogenicity of Env N-glycans. Here, we report cross-reactivity of glycan-binding bnAbs with self- and non-self N-glycans and glycoprotein antigens from different life-stages of Schistosoma mansoni. Using the IAVI Protocol C HIV infection cohort, we examine the relationship between S. mansoni seropositivity and development of bnAbs targeting glycan-dependent epitopes. We show that the unmutated common ancestor of the N332/V3-specific bnAb lineage PCDN76, isolated from an HIV-infected donor with S. mansoni seropositivity, binds to S. mansoni cercariae while lacking reactivity to gp120. Overall, these results present a strategy for elicitation of glycan-reactive bnAbs which could be exploited in HIV-1 vaccine development.


Assuntos
Infecções por HIV , HIV-1 , Parasitos , Animais , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Humanos , Parasitos/metabolismo , Polissacarídeos/metabolismo
4.
Mol Ecol ; 31(8): 2242-2263, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35152493

RESUMO

Schistosoma mansoni, a snail-borne, blood fluke that infects humans, was introduced into the Americas from Africa during the Trans-Atlantic slave trade. As this parasite shows strong specificity to the snail intermediate host, we expected that adaptation to South American Biomphalaria spp. snails would result in population bottlenecks and strong signatures of selection. We scored 475,081 single nucleotide variants in 143 S. mansoni from the Americas (Brazil, Guadeloupe and Puerto Rico) and Africa (Cameroon, Niger, Senegal, Tanzania, and Uganda), and used these data to ask: (i) Was there a population bottleneck during colonization? (ii) Can we identify signatures of selection associated with colonization? (iii) What were the source populations for colonizing parasites? We found a 2.4- to 2.9-fold reduction in diversity and much slower decay in linkage disequilibrium (LD) in parasites from East to West Africa. However, we observed similar nuclear diversity and LD in West Africa and Brazil, suggesting no strong bottlenecks and limited barriers to colonization. We identified five genome regions showing selection in the Americas, compared with three in West Africa and none in East Africa, which we speculate may reflect adaptation during colonization. Finally, we infer that unsampled populations from central African regions between Benin and Angola, with contributions from Niger, are probably the major source(s) for Brazilian S. mansoni. The absence of a bottleneck suggests that this is a rare case of a serendipitous invasion, where S. mansoni parasites were pre-adapted to the Americas and able to establish with relative ease.


Assuntos
Biomphalaria , Parasitos , América , Animais , Biomphalaria/genética , Biomphalaria/parasitologia , Humanos , Schistosoma mansoni/genética , Senegal/epidemiologia , Caramujos/genética , Tanzânia
5.
PLoS Pathog ; 18(2): e1010288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167626

RESUMO

Urogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is one of the most neglected tropical diseases worldwide, afflicting > 100 million people. It is characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To complement available treatment programs and break the transmission of disease, sound knowledge and understanding of the biology and ecology of S. haematobium is required. Hybridisation/introgression events and molecular variation among members of the S. haematobium-group might effect important biological and/or disease traits as well as the morbidity of disease and the effectiveness of control programs including mass drug administration. Here we report the first chromosome-contiguous genome for a well-defined laboratory line of this blood fluke. An exploration of this genome using transcriptomic data for all key developmental stages allowed us to refine gene models (including non-coding elements) and annotations, discover 'new' genes and transcription profiles for these stages, likely linked to development and/or pathogenesis. Molecular variation within S. haematobium among some geographical locations in Africa revealed unique genomic 'signatures' that matched species other than S. haematobium, indicating the occurrence of introgression events. The present reference genome (designated Shae.V3) and the findings from this study solidly underpin future functional genomic and molecular investigations of S. haematobium and accelerate systematic, large-scale population genomics investigations, with a focus on improved and sustained control of urogenital schistosomiasis.


Assuntos
Variação Genética , Genoma de Protozoário , Schistosoma haematobium/genética , Esquistossomose Urinária/parasitologia , Transcriptoma , Animais , Cromossomos/parasitologia , Genes de Protozoários , Genoma , Estudo de Associação Genômica Ampla , Análise de Sequência de DNA
6.
PLoS Negl Trop Dis ; 16(1): e0010088, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100291

RESUMO

Schistosomiasis remains a public health concern across sub-Saharan Africa; current control programmes rely on accurate mapping and high mass drug administration (MDA) coverage to attempt disease elimination. Inter-species hybridisation can occur between certain species, changing epidemiological dynamics within endemic regions, which has the potential to confound control interventions. The impact of hybridisation on disease dynamics is well illustrated in areas of Cameroon where urogenital schistosomiasis, primarily due to Schistosoma haematobium and hybrid infections, now predominate over intestinal schistosomiasis caused by Schistosoma guineensis. Genetic markers have shown the ability to identify hybrids, however the underlying genomic architecture of divergence and introgression between these species has yet to be established. In this study, restriction site associated DNA sequencing (RADseq) was used on archived adult worms initially identified as; Schistosoma bovis (n = 4), S. haematobium (n = 9), S. guineensis (n = 3) and S. guineensis x S. haematobium hybrids (n = 4) from Mali, Senegal, Niger, São Tomé and Cameroon. Genome-wide evidence supports the existence of S. guineensis and S. haematobium hybrid populations across Cameroon. The hybridisation of S. guineensis x S. haematobium has not been demonstrated on the island of São Tomé, where all samples showed no introgression with S. haematobium. Additionally, all S. haematobium isolates from Nigeria, Mali and Cameroon indicated signatures of genomic introgression from S. bovis. Adaptive loci across the S. haematobium group showed that voltage-gated calcium ion channels (Cav) could play a key role in the ability to increase the survivability of species, particularly in host systems. Where admixture has occurred between S. guineensis and S. haematobium, the excess introgressive influx of tegumental (outer helminth body) and antigenic genes from S. haematobium has increased the adaptive response in hybrids, leading to increased hybrid population fitness and viability.


Assuntos
Canais de Cálcio/genética , Quimera/genética , Schistosoma haematobium/genética , Esquistossomose Urinária/epidemiologia , Esquistossomose Urinária/transmissão , Animais , Anti-Helmínticos/uso terapêutico , Canais de Cálcio/metabolismo , Camarões/epidemiologia , DNA de Protozoário/genética , Humanos , Masculino , Praziquantel/uso terapêutico , Schistosoma haematobium/classificação , Schistosoma haematobium/efeitos dos fármacos , Schistosoma haematobium/isolamento & purificação , Esquistossomose Urinária/tratamento farmacológico , Análise de Sequência de DNA , Doenças Transmitidas pela Água/parasitologia
7.
Sci Transl Med ; 13(625): eabj9114, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936381

RESUMO

Mass drug administration with praziquantel (PZQ) monotherapy is considered the mainstay for control and elimination of the parasites causing schistosomiasis in humans. This drug shows imperfect cure rates in the field, and parasites showing reduced PZQ response can be selected in the laboratory, but the extent of resistance in Schistosoma mansoni populations is unknown. We examined the genetic basis of the variation in response in a PZQ-selected S. mansoni population (SmLE-PZQ-R) in which 35% of the parasitic worms survive high-dose PZQ (73 micrograms per milliliter) treatment. We used genome-wide association to map loci underlying PZQ response and identified a transient receptor potential (Sm.TRPMPZQ) channel (Smp_246790) within the major chromosome 3 peak that is activated by nanomolar concentrations of PZQ. The PZQ response showed recessive inheritance and marker-assisted selection of parasites at a single Sm.TRPMPZQ SNP that produced populations of PZQ-enriched resistant (PZQ-ER) and PZQ-enriched sensitive (PZQ-ES) parasites, exhibiting >377-fold difference in PZQ response. The PZQ-ER parasites survived treatment in rodents at higher frequencies compared with PZQ-ES, and resistant parasites exhibited 2.25-fold lower expression of Sm.TRPMPZQ relative to sensitive parasites. Specific chemical blockers of Sm.TRPMPZQ enhanced PZQ resistance, whereas Sm.TRPMPZQ activators increased sensitivity. We surveyed Sm.TRPMPZQ sequence variations in 259 parasites from different global sites and identified one nonsense mutation that resulted in a truncated protein with no PZQ binding site. Our results demonstrate that Sm.TRPMPZQ underlies variation in PZQ responses in S. mansoni and provides an approach for monitoring emerging PZQ-resistant alleles in schistosome elimination programs.


Assuntos
Anti-Helmínticos , Parasitos , Esquistossomose mansoni , Canais de Potencial de Receptor Transitório , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Estudo de Associação Genômica Ampla , Parasitos/metabolismo , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/epidemiologia , Esquistossomose mansoni/parasitologia , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/uso terapêutico
8.
PLoS Negl Trop Dis ; 15(7): e0009572, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228750

RESUMO

BACKGROUND: Schistosomiasis is a parasitic disease that is transmitted by skin contact with waterborne schistosome cercariae. Mass drug administration with praziquantel is an effective control method, but it cannot prevent reinfection if contact with cercariae infested water continues. Providing safe water for contact activities such as laundry and bathing can help to reduce transmission. In this study we examine the direct effect of UV light on Schistosoma mansoni cercariae using ultraviolet light-emitting diodes (UV LEDs) and a low-pressure (LP) mercury arc discharge lamp. METHODOLOGY: S. mansoni cercariae were exposed to UV light at four peak wavelengths: 255 nm, 265 nm, 285 nm (UV LEDs), and 253.7 nm (LP lamp) using bench scale collimated beam apparatus. The UV fluence ranged from 0-300 mJ/cm2 at each wavelength. Cercariae were studied under a stereo-microscope at 0, 60, and 180 minutes post-exposure and the viability of cercariae was determined by assessing their motility and morphology. CONCLUSION: Very high UV fluences were required to kill S. mansoni cercariae, when compared to most other waterborne pathogens. At 265 nm a fluence of 247 mJ/cm2 (95% confidence interval (CI): 234-261 mJ/cm2) was required to achieve a 1-log10 reduction at 0 minutes post-exposure. Cercariae were visibly damaged at lower fluences, and the log reduction increased with time post-exposure at all wavelengths. Fluences of 127 mJ/cm2 (95% CI: 111-146 mJ/cm2) and 99 mJ/cm2 (95% CI: 85-113 mJ/cm2) were required to achieve a 1-log10 reduction at 60 and 180 minutes post-exposure at 265 nm. At 0 minutes post-exposure 285 nm was slightly less effective, but there was no statistical difference between 265 nm and 285 nm after 60 minutes. The least effective wavelengths were 255 nm and 253.7 nm. Due to the high fluences required, UV disinfection is unlikely to be an energy- or cost-efficient water treatment method against schistosome cercariae when compared to other methods such as chlorination, unless it can be demonstrated that UV-damaged cercariae are non-infective using alternative assay methods or there are improvements in UV LED technology.


Assuntos
Desinfecção/métodos , Schistosoma mansoni/efeitos da radiação , Raios Ultravioleta , Purificação da Água/métodos , Água/parasitologia , Animais , Cercárias/efeitos da radiação , Humanos
9.
PLoS Negl Trop Dis ; 15(2): e0009120, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33544705

RESUMO

Paragonimiasis is caused by zoonotic trematodes of Paragonimus spp., found in Asia, the Americas and Africa, particularly in tropical regions. These parasites have a complex, multi-host life cycle, with mammalian definitive hosts and larval stages cycling through two intermediate hosts (snails and freshwater decapod crustaceans). In Africa, paragonimiasis is particularly neglected, and remains the only human parasitic disease without a fully characterised life cycle. However paragonimiasis has potentially significant impacts on public health in Africa, and prevalence has likely been underestimated through under-reporting and misdiagnosis as tuberculosis due to a similar clinical presentation. We identified the need to synthesise current knowledge and map endemic foci for African Paragonimus spp. together with Poikilorchis congolensis, a rare, taxonomically distant trematode with a similar distribution and morphology. We present the first systematic review of the literature relating to African paragonimiasis, combined with mapping of all reported occurrences of Paragonimus spp. throughout Africa, from the 1910s to the present. In human surveys, numerous reports of significant recent transmission in Southeast Nigeria were uncovered, with high prevalence and intensity of infection. Overall prevalence was significantly higher for P. uterobilateralis compared to P. africanus across studies. The potential endemicity of P. africanus in Côte d'Ivoire is also reported. In freshwater crab intermediate hosts, differences in prevalence and intensity of either P. uterobilateralis or P. africanus were evident across genera and species, suggesting differences in susceptibility. Mapping showed temporal stability of endemic foci, with the majority of known occurrences of Paragonimus found in the rainforest zone of West and Central Africa, but with several outliers elsewhere on the continent. This suggests substantial under sampling and localised infection where potential host distributions overlap. Our review highlights the urgent need for increased sampling in active disease foci in Africa, particularly using molecular analysis to fully characterise Paragonimus species and their hosts.


Assuntos
Paragonimíase/epidemiologia , Paragonimíase/transmissão , Paragonimus , Animais , Bases de Dados Factuais , Humanos , Estágios do Ciclo de Vida , Pulmão , Prevalência , Saúde Pública , Caramujos/parasitologia
10.
PLoS Negl Trop Dis ; 14(8): e0008665, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32822356

RESUMO

BACKGROUND: Schistosomiasis is a water-based disease acquired through contact with cercaria-infested water. Communities living in endemic regions often rely on parasite-contaminated freshwater bodies for their daily water contact activities, resulting in recurring schistosomiasis infection. In such instances, water treatment can provide safe water on a household or community scale. However, to-date there are no water treatment guidelines that provide information on how to treat water containing schistosome cercariae. Here, we rigorously test the effectiveness of chlorine against Schistosoma mansoni cercariae. METHOD: S. mansoni cercariae were chlorinated using sodium hypochlorite under lab and field condition. The water pH was controlled at 6.5, 7.0 or 7.5, the water temperature at 20°C or 27°C, and the chlorine dose at 1, 2 or 3 mg/l. Experiments were conducted up to contact times of 45 minutes. 100 cercariae were used per experiment, thereby achieving up to 2-log10 inactivations of cercariae. Experiments were replicated under field conditions at Lake Victoria, Tanzania. CONCLUSION: A CT (residual chlorine concentration x chlorine contact time) value of 26±4 mg·min/l is required to achieve a 2-log10 inactivation of S. mansoni cercariae under the most conservative condition tested (pH 7.5, 20°C). Field and lab-cultivated cercariae show similar chlorine sensitivities. A CT value of 30 mg·min/l is therefore recommended to disinfect cercaria-infested water, though safety factors may be required, depending on water quality and operating conditions. This CT value can be achieved with a chlorine residual of 1 mg/l after a contact time of 30 minutes, for example. This recommendation can be used to provide safe water for household and recreational water activities in communities that lack safe alternative water sources.


Assuntos
Cercárias/efeitos dos fármacos , Cloro/farmacologia , Halogenação , Schistosoma mansoni/efeitos dos fármacos , Purificação da Água/métodos , Animais , Concentração de Íons de Hidrogênio , Schistosoma mansoni/fisiologia , Esquistossomose/parasitologia , Esquistossomose/prevenção & controle , Caramujos , Tanzânia , Temperatura , Água/parasitologia
11.
Parasit Vectors ; 13(1): 360, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690109

RESUMO

BACKGROUND: Schistosoma japonicum is a waterborne parasite that causes schistosomiasis in humans and in more than 40 animal species. Schistosoma japonicum shows distinct genetic differentiation among geographical populations and multiple hosts, but the genetic diversity of different developmental stages of S. japonicum from is less studied. Such studies could elucidate ecological mechanisms in disease transmission by analysing feedbacks in individual physiology and population state. METHODS: After infection using cercariae from a pool of snails shedding together (Method I) and infection using mixed equal numbers of cercariae from individually shed snails (Method II), different developmental stages of S. japonicum were genotyped with microsatellite loci, including 346 cercariae, 701 adult worms and 393 miracidia. Genetic diversity and molecular variation were calculated at different population levels. Kinships (I') among cercariae at intra-snail and inter-snail levels were evaluated. Genetic distance (Dsw) was compared between paired and unpaired worms, and partner changing was investigated through paternity identification for miracidia. RESULTS: The cercaria clones in individual snails varied from 1 to 8 and the kinship of cercariae within individual snails was significant higher (P < 0.001) than that among different snails after deleting near-identical multi-locus genotypes (niMLGs). The allelic diversity of worms in Method I was lower (P < 0.001) than that in Method II, and allele frequency among mice in Method I was also less consistent. The parents of some miracidia were worms that were not paired when collected. The Dsw between each female of paired and unpaired males was much larger (P < 0.001) than that between the female and male in each pair. CONCLUSIONS: Most of the infected snails contained multiple miracidia clones. The aggregation of genetically similar S. japonicum miracidia in individual snails and the unbalanced distribution of miracidia among snails suggests a non-uniform genetic distribution of cercariae among snails in the field. This further influenced the genetic structure of adult worms from infections with different cercariae sampling methods. Schistosoma japonicum in mice can change paired partner, preferring to mate with genetically similar worms. These characteristics provide implications for understanding the balance in genetic diversity of S. japonicum related to the transmission of schistosomiasis.


Assuntos
Schistosoma japonicum/genética , Esquistossomose Japônica/transmissão , Caramujos/parasitologia , Animais , Cercárias/genética , Variação Genética , Técnicas de Genotipagem , Estágios do Ciclo de Vida/genética , Preferência de Acasalamento Animal , Camundongos , Repetições de Microssatélites/genética
12.
Am J Trop Med Hyg ; 103(1_Suppl): 66-79, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32400353

RESUMO

The Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) was created in 2008 to answer questions of importance to program managers working to reduce the burden of schistosomiasis in Africa. In the past, intermediate host snail monitoring and control was an important part of integrated schistosomiasis control. However, in Africa, efforts to control snails have declined dramatically over the last 30 years. A resurgence of interest in the control of snails has been prompted by the realization, backed by a World Health Assembly resolution (WHA65.21), that mass drug administration alone may be insufficient to achieve schistosomiasis elimination. SCORE has supported work on snail identification and mapping and investigated how xenomonitoring techniques can aid in the identification of infected snails and thereby identify potential transmission areas. Focal mollusciciding with niclosamide was undertaken in Zanzibar and Côte d'Ivoire as a part of elimination studies. Two studies involving biological control of snails were conducted: one explored the association of freshwater riverine prawns and snail hosts in Côte d'Ivoire and the other assessed the current distribution of Procambarus clarkii, the invasive Louisiana red swamp crayfish, in Kenya and its association with snail hosts and schistosomiasis transmission. SCORE also supported modeling studies on the importance of snail control in achieving elimination and a meta-analysis of the impact of molluscicide-based snail control programs on human schistosomiasis prevalence and incidence. SCORE's snail control studies contributed to increased investment in building capacity, and specimens collected during SCORE research deposited in the Schistosomiasis Collections at the Natural History Museum (SCAN) will provide a valuable resource for the years to come.


Assuntos
Reservatórios de Doenças/parasitologia , Moluscocidas/farmacologia , Esquistossomose/transmissão , Caramujos/parasitologia , Animais , Astacoidea , Agentes de Controle Biológico , Monitoramento Biológico , Côte d'Ivoire/epidemiologia , Decápodes , Água Doce/parasitologia , Humanos , Incidência , Quênia/epidemiologia , Modelos Teóricos , Niclosamida/farmacocinética , Prevalência , Avaliação de Programas e Projetos de Saúde , Schistosoma/isolamento & purificação , Schistosoma/parasitologia , Esquistossomose/parasitologia , Caramujos/efeitos dos fármacos , Tanzânia/epidemiologia
13.
PLoS Negl Trop Dis ; 14(3): e0008176, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214320

RESUMO

BACKGROUND: Schistosome cercariae are the human-infectious stage of the Schistosoma parasite. They are shed by snail intermediate hosts living in freshwater, and penetrate the skin of the human host to develop into schistosomes, resulting in schistosomiasis infection. Water treatment (e.g. filtration or chlorination) is one way of cutting disease transmission; it kills or removes cercariae to provide safe water for people to use for activities such as bathing or laundry as an alternative to infested lakes or rivers. At present, there is no standard method for assessing the effectiveness of water treatment processes on cercariae. Examining cercarial movement under a microscope is the most common method, yet it is subjective and time-consuming. Hence, there is a need to develop and verify accurate, high-throughput assays for quantifying cercarial viability. METHOD: We tested two fluorescence assays for their ability to accurately determine cercarial viability in water samples, using S. mansoni cercariae released from infected snails in the Schistosomiasis Collection at the Natural History Museum, London. These assays consist of dual stains, namely a vital and non-vital dye; fluorescein diacetate (FDA) and Hoechst, and FDA and Propidium Iodide. We also compared the results of the fluorescence assays to the viability determined by microscopy. CONCLUSION: Both fluorescence assays can detect the viability of cercariae to an accuracy of at least 92.2% ± 6.3%. Comparing the assays to microscopy, no statistically significant difference was found between the method's viability results. However, the fluorescence assays are less subjective and less time-consuming than microscopy, and therefore present a promising method for quantifying the viability of schistosome cercariae in water samples.


Assuntos
Cercárias/crescimento & desenvolvimento , Microscopia de Fluorescência/métodos , Carga Parasitária/métodos , Schistosoma mansoni/crescimento & desenvolvimento , Coloração e Rotulagem/métodos , Purificação da Água , Água/parasitologia , Animais , Transmissão de Doença Infecciosa/prevenção & controle , Esquistossomose mansoni/prevenção & controle , Resultado do Tratamento
14.
PLoS Pathog ; 15(10): e1007881, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31652296

RESUMO

Do mutations required for adaptation occur de novo, or are they segregating within populations as standing genetic variation? This question is key to understanding adaptive change in nature, and has important practical consequences for the evolution of drug resistance. We provide evidence that alleles conferring resistance to oxamniquine (OXA), an antischistosomal drug, are widespread in natural parasite populations under minimal drug pressure and predate OXA deployment. OXA has been used since the 1970s to treat Schistosoma mansoni infections in the New World where S. mansoni established during the slave trade. Recessive loss-of-function mutations within a parasite sulfotransferase (SmSULT-OR) underlie resistance, and several verified resistance mutations, including a deletion (p.E142del), have been identified in the New World. Here we investigate sequence variation in SmSULT-OR in S. mansoni from the Old World, where OXA has seen minimal usage. We sequenced exomes of 204 S. mansoni parasites from West Africa, East Africa and the Middle East, and scored variants in SmSULT-OR and flanking regions. We identified 39 non-synonymous SNPs, 4 deletions, 1 duplication and 1 premature stop codon in the SmSULT-OR coding sequence, including one confirmed resistance deletion (p.E142del). We expressed recombinant proteins and used an in vitro OXA activation assay to functionally validate the OXA-resistance phenotype for four predicted OXA-resistance mutations. Three aspects of the data are of particular interest: (i) segregating OXA-resistance alleles are widespread in Old World populations (4.29-14.91% frequency), despite minimal OXA usage, (ii) two OXA-resistance mutations (p.W120R, p.N171IfsX28) are particularly common (>5%) in East African and Middle-Eastern populations, (iii) the p.E142del allele has identical flanking SNPs in both West Africa and Puerto Rico, suggesting that parasites bearing this allele colonized the New World during the slave trade and therefore predate OXA deployment. We conclude that standing variation for OXA resistance is widespread in S. mansoni.


Assuntos
Resistência a Medicamentos/genética , Oxamniquine/uso terapêutico , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/genética , Esquistossomicidas/uso terapêutico , Adaptação Fisiológica/genética , Alelos , Animais , Cricetinae , Humanos , Níger , Omã , Polimorfismo de Nucleotídeo Único/genética , Ratos , Esquistossomose mansoni/tratamento farmacológico , Senegal , Caramujos/parasitologia , Tanzânia
15.
Mol Biol Evol ; 36(10): 2127-2142, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251352

RESUMO

Introgression among parasite species has the potential to transfer traits of biomedical importance across species boundaries. The parasitic blood fluke Schistosoma haematobium causes urogenital schistosomiasis in humans across sub-Saharan Africa. Hybridization with other schistosome species is assumed to occur commonly, because genetic crosses between S. haematobium and livestock schistosomes, including S. bovis, can be staged in the laboratory, and sequencing of mtDNA and rDNA amplified from microscopic miracidia larvae frequently reveals markers from different species. However, the frequency, direction, age, and genomic consequences of hybridization are unknown. We hatched miracidia from eggs and sequenced the exomes from 96 individual S. haematobium miracidia from infected patients from Niger and the Zanzibar archipelago. These data revealed no evidence for contemporary hybridization between S. bovis and S. haematobium in our samples. However, all Nigerien S. haematobium genomes sampled show hybrid ancestry, with 3.3-8.2% of their nuclear genomes derived from S. bovis, providing evidence of an ancient introgression event that occurred at least 108-613 generations ago. Some S. bovis-derived alleles have spread to high frequency or reached fixation and show strong signatures of directional selection; the strongest signal spans a single gene in the invadolysin gene family (Chr. 4). Our results suggest that S. bovis/S. haematobium hybridization occurs rarely but demonstrate profound consequences of ancient introgression from a livestock parasite into the genome of S. haematobium, the most prevalent schistosome species infecting humans.


Assuntos
Introgressão Genética , Proteínas de Helminto/genética , Hibridização Genética , Metaloendopeptidases/genética , Schistosoma/genética , Animais , Variação Genética , Genoma Mitocondrial , Sequenciamento do Exoma
16.
PLoS Pathog ; 15(1): e1007513, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30673782

RESUMO

Mesenteric infection by the parasitic blood fluke Schistosoma bovis is a common veterinary problem in Africa and the Middle East and occasionally in the Mediterranean Region. The species also has the ability to form interspecific hybrids with the human parasite S. haematobium with natural hybridisation observed in West Africa, presenting possible zoonotic transmission. Additionally, this exchange of alleles between species may dramatically influence disease dynamics and parasite evolution. We have generated a 374 Mb assembly of the S. bovis genome using Illumina and PacBio-based technologies. Despite infecting different hosts and organs, the genome sequences of S. bovis and S. haematobium appeared strikingly similar with 97% sequence identity. The two species share 98% of protein-coding genes, with an average sequence identity of 97.3% at the amino acid level. Genome comparison identified large continuous parts of the genome (up to several 100 kb) showing almost 100% sequence identity between S. bovis and S. haematobium. It is unlikely that this is a result of genome conservation and provides further evidence of natural interspecific hybridization between S. bovis and S. haematobium. Our results suggest that foreign DNA obtained by interspecific hybridization was maintained in the population through multiple meiosis cycles and that hybrids were sexually reproductive, producing viable offspring. The S. bovis genome assembly forms a highly valuable resource for studying schistosome evolution and exploring genetic regions that are associated with species-specific phenotypic traits.


Assuntos
Hibridização Genética/genética , Schistosoma/genética , África , África Ocidental , Animais , Sequência de Bases/genética , Bovinos , Mapeamento Cromossômico/métodos , DNA/genética , Genoma/genética , Genoma Mitocondrial/genética , Hibridização Genética/fisiologia , Oriente Médio , Filogenia , Proteoma/genética , Especificidade da Espécie , Trematódeos/genética , Sequenciamento Completo do Genoma/métodos
17.
Parasitology ; 145(13): 1739-1747, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29806576

RESUMO

Adult schistosomes live in the blood vessels and cannot easily be sampled from humans, so archived miracidia larvae hatched from eggs expelled in feces or urine are commonly used for population genetic studies. Large collections of archived miracidia on FTA cards are now available through the Schistosomiasis Collection at the Natural History Museum (SCAN). Here we describe protocols for whole genome amplification of Schistosoma mansoni and Schistosome haematobium miracidia from these cards, as well as real time PCR quantification of amplified schistosome DNA. We used microgram quantities of DNA obtained for exome capture and sequencing of single miracidia, generating dense polymorphism data across the exome. These methods will facilitate the transition from population genetics, using limited numbers of markers to population genomics using genome-wide marker information, maximising the value of collections such as SCAN.


Assuntos
Sequenciamento do Exoma , Genoma Helmíntico , Técnicas de Amplificação de Ácido Nucleico , Schistosoma haematobium/genética , Schistosoma mansoni/genética , Animais , Bancos de Espécimes Biológicos , Criança , DNA de Helmintos/genética , Fezes/parasitologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Reação em Cadeia da Polimerase , Polimorfismo Genético
18.
Parasit Vectors ; 10(1): 460, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29017583

RESUMO

BACKGROUND: This study was designed to determine the distribution and identity of potential intermediate snail hosts of Schistosoma spp. in Bengo, Luanda, Kwanza Norte and Malanje Provinces in north-western Angola. This is an area where infection with Schistosoma haematobium, causing urogenital schistosomiasis, is common but little is yet known about transmission of the disease. Angola has had a varied past with regard to disease control and is revitalising efforts to combat neglected tropical diseases. METHODS: Snails were sampled from 60 water-contact points. Specimens of the genera Bulinus, Biomphalaria or Lymnaea were screened for trematode infections by inducing cercarial shedding. Snails were initially identified using shell morphology; subsequently a cytochrome c oxidase subunit 1 (cox1) gene fragment was amplified from a subset of snails from each site, for molecular identification. Cercariae were captured onto FTA cards for molecular analysis. Specimens of Bulinus angolensis collected from the original locality of the type specimen have been characterised and comparisons made with snails collected in 1957 held at the Natural History Museum, London, UK. RESULTS: In total snails of nine genera were identified using morphological characteristics: Biomphalaria, Bulinus, Gyraulus, Lanistes, Lentorbis, Lymnaea, Melanoides, Physa and Succinea. Significant for schistosomiasis transmission, was the discovery of Bulinus globosus, B. canescens, B. angolensis, B. crystallinus and Biomphalaria salinarum in their type-localities and elsewhere. Bulinus globosus and B. angolensis occurred in two distinct geographical areas. The cox1 sequence for B. globosus differed markedly from those from specimens of this species collected from other countries. Bulinus angolensis is more closely related to B. globosus than originally documented and should be included in the B. africanus group. Schistosoma haematobium cercariae were recovered from B. globosus from two locations: Cabungo, Bengo (20 snails) and Calandula, Malanje (5 snails). Schistosoma haematobium cercariae were identified as group 1 cox1 corresponding to the type common throughout the African mainland. CONCLUSIONS: Various freshwater bodies in north-western Angola harbour potential intermediate snail hosts for urogenital schistosomiasis, highlighting the need to map the rest of the country to identify areas where transmission can occur and where control efforts should be targeted. The molecular phylogeny generated from the samples confirmed that considerable variation exists in B. globosus, which is the primary snail host for S. haematobium in many regions of Africa.


Assuntos
Distribuição Animal , Bulinus/classificação , Caramujos/classificação , Angola , Animais , Bulinus/genética , Bulinus/parasitologia , Bulinus/fisiologia , Cercárias , Vetores de Doenças , Água Doce/parasitologia , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/parasitologia , Filogenia , Schistosoma haematobium/isolamento & purificação , Schistosoma haematobium/fisiologia , Esquistossomose Urinária/parasitologia , Esquistossomose Urinária/transmissão , Caramujos/genética , Caramujos/parasitologia
19.
Parasitology ; 144(13): 1752-1762, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28747240

RESUMO

High levels of molecular diversity were identified in mitochondrial cytochrome c oxidase (cox1) gene sequences of Schistosoma turkestanicum from Hungary. These cox1 sequences were all specific to Hungary which contrasted with the low levels of diversity seen in the nuclear internal transcribed spacer region (ITS) sequences, the majority of which were shared between China and Iran isolates. Measures of within and between host molecular variation within S. turkestanicum showed there to be substantial differences in molecular diversity, with cox1 being significantly more diverse than the ITS. Measures of haplotype frequencies revealed that each host contained its own subpopulation of genetically unique parasites with significant levels of differentiation. Pairwise mismatch analysis of cox1 sequences indicated S. turkestanicum populations to have a bimodal pairwise difference distribution and to be stable unlike the ITS sequences, which appeared to have undergone a recent population expansion event. Positive selection was also detected in the cox1 sequences, and biochemical modelling of the resulting protein illustrated significant mutational events causing an alteration to the isoelectric point of the cox1 protein, potentially altering metabolism. The evolutionary signature from the cox1 indicates local adaptation and long establishment of S. turkestanicum in Hungary with continual introgression of nuclear genes from Asian isolates. These processes have led to the occurrence of mito-nuclear discordance in a schistosome population.


Assuntos
DNA de Helmintos/genética , Evolução Molecular , Proteínas de Helminto/genética , Proteínas Mitocondriais/genética , Schistosoma/genética , Animais , DNA Intergênico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Haplótipos , Hungria
20.
Sci Rep ; 6: 35614, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762399

RESUMO

During infection of their human definitive host, schistosomes transform rapidly from free-swimming infective cercariae in freshwater to endoparasitic schistosomules. The 'somules' next migrate within the skin to access the vasculature and are surrounded by host molecules that might activate intracellular pathways that influence somule survival, development and/or behaviour. However, such 'transactivation' by host factors in schistosomes is not well defined. In the present study, we have characterized and functionally localized the dynamics of protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) activation during early somule development in vitro and demonstrate activation of these protein kinases by human epidermal growth factor, insulin, and insulin-like growth factor I, particularly at the parasite surface. Further, we provide evidence that support the existence of specialized signalling domains called lipid rafts in schistosomes and propose that correct signalling to ERK requires proper raft organization. Finally, we show that modulation of PKC and ERK activities in somules affects motility and reduces somule survival. Thus, PKC and ERK are important mediators of host-ligand regulated transactivation events in schistosomes, and represent potential targets for anti-schistosome therapy aimed at reducing parasite survival in the human host.


Assuntos
Interações Hospedeiro-Patógeno , Schistosoma mansoni/crescimento & desenvolvimento , Transdução de Sinais , Animais , Fator de Crescimento Epidérmico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Locomoção , Microdomínios da Membrana/metabolismo , Proteína Quinase C/metabolismo , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA