Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 52(44): 16261-16275, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37855226

RESUMO

A judicious selection of substituents in cyclometalating 2-arylbenzimidazoles and an ancillary aromatic 1,3-diketone enabled the creation of heteroleptic iridium(III) complexes demonstrating strong light absorption up to 500 nm (ε ≈ 10 000-12 000 M-1 cm-1). The complexes, which were studied by various spectroscopic techniques, single-crystal X-ray diffraction and cyclic voltammetry, displayed tunable absorption maxima depending on the nature of substituents and their positions. The experimental study was corroborated by quantum chemical calculations, which showed an increased contribution of intraligand charge transfer transitions to the visible light absorption in the case of complexes containing electron-withdrawing substituents in the ligands. Despite being of high intensity, some of these transitions are responsible for the formation of the excited states located at large distances from the 'anchoring' fragment incorporated in the ancillary ligand. In turn, incorporation of electron-donating substituents at the para-position to the Ir-C bonds increases the number of excited states located on the ancillary ligand. The destabilization of the HOMO, which is caused by the increase in the electron-donating ability of the substituents in the metalated rings, translated into negative shifts of the Ir4+/Ir3+ redox potential, affecting, in some cases, the degree of electrochemical reversibility of the complexes. Several complexes having strong light-harvesting characteristics and undergoing reversible oxidation in the appropriate potential range were used for coating the TiO2 photoanodes, which reached an efficiency of 2.15% upon irradiation with the standard AM 1.5 spectrum.

2.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762351

RESUMO

Thin-film nanocrystalline hematite electrodes were fabricated by electrochemical deposition and loaded with electrodeposited zinc oxide in various amounts. Under visible light illumination, these electrodes demonstrate high activity in the photoelectrochemical degradation of methanol, ethylene glycol and, in particular, glycerol. Results of intensity-modulated photocurrent spectroscopy show that the photoelectrocatalysis efficiency is explained by the suppression of the electron-hole pair recombination and an increase in the rate of photo-induced charge transfer. Thus, zinc oxide can be considered an effective modifying additive for hematite photoanodes.


Assuntos
Óxido de Zinco , Filmes Cinematográficos , Eletrodos , Elétrons
3.
Dalton Trans ; 52(19): 6435-6450, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37092600

RESUMO

The synthesis, structure, optical and redox properties as well as photovoltaic studies of iridium(III) complexes with cyclometalated 2-arylbenzimidazoles decorated with various polyaromatic fragments and an ancillary aromatic ß-diketone are reported. Despite the strong preference of the iridium(III) ion to form bis- or tris-cyclometalated complexes in which the metal participates in five-membered metallacycles, the cyclometalation of the benzimidazole ligands containing rigid π-extended systems yields dimeric complexes containing strained five- or six-membered metallacycles and allows for generating an extremely rare monocyclometalated complex. X-ray crystallography shows that the steric strain observed in the dimers is retained in heteroleptic diketonate complexes which is also corroborated by gas-phase DFT calculations. While emission maxima and redox potentials of the heteroleptic complexes exhibit just a moderate variation upon the change of the cyclometalated ligands, the extension of the π-system of the benzimidazole ligands give the complexes remarkable light absorption in the visible spectral range, which meets the requirements for application in dye-sensitized solar cells. At the titania photoanodes, these iridium dyes retain their optical properties and exhibit power conversion efficiencies under standard AM 1.5 G conditions comparable to those of other iridium-based sensitizers. These results demonstrate that the size and position of the π-extended fragment in cyclometalated ligands can modulate not only the electronic structure of the corresponding iridium(III) complexes, but also affect their composition, structure and reactivity that may find implications in future design of emerging iridium dyes, emitters and catalysts.

4.
J Fluoresc ; 25(3): 763-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25822191

RESUMO

Novel donor-π-acceptor dyes bearing the pyrimidine unit as an electron-withdrawing group have been synthesized by using combination of two processes, based on the microwave-assisted Suzuki cross-coupling reaction and nucleophilic aromatic substitution of hydrogen. Spectral properties of the obtained dyes in six aprotic solvents of various polarities have been studied by ultraviolet-visible and fluorescence spectroscopy. In contrast to the absorption spectra, fluorescence emission spectra displayed a strong dependence from their solvent polarities. The nature of the observed long wavelength maxima has been elucidated by means of quantum chemical calculations. The electrochemical properties of these dyes have been investigated by using cyclic voltammetry, while their photovoltaic performance was evaluated by a device fabrication study. The experimental and calculation data show that all of the dyes can be regarded as potentially good photosensitizers for dye-sensitized solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA