Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 35(22): 4754-4756, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31134279

RESUMO

SUMMARY: We describe a novel computational method for genotyping repeats using sequence graphs. This method addresses the long-standing need to accurately genotype medically important loci containing repeats adjacent to other variants or imperfect DNA repeats such as polyalanine repeats. Here we introduce a new version of our repeat genotyping software, ExpansionHunter, that uses this method to perform targeted genotyping of a broad class of such loci. AVAILABILITY AND IMPLEMENTATION: ExpansionHunter is implemented in C++ and is available under the Apache License Version 2.0. The source code, documentation, and Linux/macOS binaries are available at https://github.com/Illumina/ExpansionHunter/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Repetições de Microssatélites , Software , Genótipo
2.
Bioinformatics ; 35(9): 1579-1581, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30304370

RESUMO

MOTIVATION: Next-generation sequencing technology is transitioning quickly from research labs to clinical settings. The diagnosis and treatment selection for many acquired and autosomal conditions necessitate a method for accurately detecting somatic and germline variants. RESULTS: We have developed Pisces, a rapid, versatile and accurate small-variant calling suite designed for somatic and germline amplicon sequencing applications. Accuracy is achieved by four distinct modules, each incorporating a number of novel algorithmic strategies. AVAILABILITY AND IMPLEMENTATION: Pisces is distributed under an open source license and can be downloaded from https://github.com/Illumina/Pisces. Pisces is available on the BaseSpace™ SequenceHub. It is distributed on Illumina sequencing platforms such as the MiSeq™ and is included in the Praxis™ Extended RAS Panel test which was recently approved by the FDA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Células Germinativas
3.
PLoS One ; 12(10): e0186091, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29049317

RESUMO

In jawed vertebrates, oligodendrocytes (OLs) are the myelin-producing glial cells responsible for ensheathment of axons within the central nervous system and are also crucial for remyelination following injury or disease. Olig2 is a crucial factor in the specification and differentiation of oligodendrocyte precursor cells (OPCs) that give rise to mature, myelin-producing OLs in the developing and postnatal CNS; however, its role in adulthood is less well understood. To investigate the role Olig2 plays in regulating gene expression in the adult OL lineage in a physiologically-relevant context, we performed chromatin immunoprecipitation followed by next generation sequencing analysis (ChIP-Seq) using whole spinal cord tissue harvested from adult mice. We found that many of the Olig2-bound sites were associated with genes with biological processes corresponding to OL differentiation (Nkx2.2, Nkx6.2, and Sip1), myelination and ensheathment (Mbp, Cldn11, and Mobp), as well as cell cycle and cytoskeletal regulation. This suggests Olig2 continues to play a critical role in processes related to OL differentiation and myelination well into adulthood.


Assuntos
Genoma , Fator de Transcrição 2 de Oligodendrócitos/genética , Medula Espinal/metabolismo , Animais , Imunoprecipitação da Cromatina , Proteína Homeobox Nkx-2.2 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo
4.
PLoS One ; 9(8): e102909, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170892

RESUMO

Detailed analysis of disease-affected tissue provides insight into molecular mechanisms contributing to pathogenesis. Substantia nigra, striatum, and cortex are functionally connected with increasing degrees of alpha-synuclein pathology in Parkinson's disease. We undertook functional and causal pathway analysis of gene expression and proteomic alterations in these three regions, and the data revealed pathways that correlated with disease progression. In addition, microarray and RNAseq experiments revealed previously unidentified causal changes related to oligodendrocyte function and synaptic vesicle release, and these and other changes were reflected across all brain regions. Importantly, subsets of these changes were replicated in Parkinson's disease blood; suggesting peripheral tissue may provide important avenues for understanding and measuring disease status and progression. Proteomic assessment revealed alterations in mitochondria and vesicular transport proteins that preceded gene expression changes indicating defects in translation and/or protein turnover. Our combined approach of proteomics, RNAseq and microarray analyses provides a comprehensive view of the molecular changes that accompany functional loss and alpha-synuclein pathology in Parkinson's disease, and may be instrumental to understand, diagnose and follow Parkinson's disease progression.


Assuntos
Encéfalo/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Animais , Encéfalo/metabolismo , Progressão da Doença , Regulação da Expressão Gênica , Humanos , Análise em Microsséries , Proteínas/análise , Proteínas/genética , Proteínas/metabolismo , Proteômica , Análise de Sequência de RNA , Transdução de Sinais , alfa-Sinucleína/análise , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
5.
PLoS One ; 9(5): e96687, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24817247

RESUMO

Recent proteomic and genetic studies have aimed to identify a complete network of interactions between HIV and human proteins and genes. This HIV-human interaction network provides invaluable information as to how HIV exploits the host machinery and can be used as a starting point for further functional analyses. We integrated this network with complementary datasets of protein function and interaction to nominate human protein complexes with likely roles in viral infection. Based on our approach we identified a global map of 40 HIV-human protein complexes with putative roles in HIV infection, some of which are involved in DNA replication and repair, transcription, translation, and cytoskeletal regulation. Targeted RNAi screens were used to validate several proteins and complexes for functional impact on viral infection. Thus, our HIV-human protein complex map provides a significant resource of potential HIV-host interactions for further study.


Assuntos
Infecções por HIV/metabolismo , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Mapas de Interação de Proteínas , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Células Jurkat , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Interferência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA