Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(6): 064801, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635713

RESUMO

Sources of high-energy photons have important applications in almost all areas of research. However, the photon flux and intensity of existing sources is strongly limited for photon energies above a few hundred keV. Here we show that a high-current ultrarelativistic electron beam interacting with multiple submicrometer-thick conducting foils can undergo strong self-focusing accompanied by efficient emission of gamma-ray synchrotron photons. Physically, self-focusing and high-energy photon emission originate from the beam interaction with the near-field transition radiation accompanying the beam-foil collision. This near field radiation is of amplitude comparable with the beam self-field, and can be strong enough that a single emitted photon can carry away a significant fraction of the emitting electron energy. After beam collision with multiple foils, femtosecond collimated electron and photon beams with number density exceeding that of a solid are obtained. The relative simplicity, unique properties, and high efficiency of this gamma-ray source open up new opportunities for both applied and fundamental research including laserless investigations of strong-field QED processes with a single electron beam.

2.
J Synchrotron Radiat ; 26(Pt 3): 635-646, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074426

RESUMO

The feasibility of generating X-ray pulses in the 4-8 keV fundamental photon energy range with 0.65 TW peak power, 15 fs pulse duration and 9 × 10-5 bandwidth using the LCLS-II copper linac and hard X-ray (HXR) undulator is shown. In addition, third-harmonic pulses with 8-12 GW peak power and narrow bandwidth are also generated. High-power and small-bandwidth X-rays are obtained using two electron bunches separated by about 1 ns, one to generate a high-power seed signal, the other to amplify it through the process of the HXR undulator tapering. The bunch delay is compensated by delaying the seed pulse with a four-crystal monochromator. The high-power seed leads to higher output power and better spectral properties, with more than 94% of the X-ray power within the near-transform-limited bandwidth. Some of the experiments made possible by X-ray pulses with these characteristics are discussed, such as single-particle imaging and high-field physics.

3.
Phys Rev Lett ; 121(4): 044801, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30095929

RESUMO

The dynamics of intense electron bunches in free electron lasers and plasma wakefield accelerators are dominated by complex collective effects such as wakefields, space charge, coherent synchrotron radiation, and drift unpredictably with time, making it difficult to control and tune beam properties using model-based approaches. We report on a first of its kind combination of automatic, model-independent feedback with a neural network for control of the longitudinal phase space of relativistic electron beams with femtosecond resolution based only on transverse deflecting cavity measurements.

4.
Phys Rev Lett ; 120(26): 264801, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004769

RESUMO

We demonstrate a novel multistage amplification scheme for self-amplified spontaneous-emission free electron lasers for the production of few femtosecond pulses with very high power in the soft x-ray regime. The scheme uses the fresh-slice technique to produce an x-ray pulse on the bunch tail, subsequently amplified in downstream undulator sections by fresh electrons. With three-stages amplification, x-ray pulses with an energy of hundreds of microjoules are produced in few femtoseconds. For single-spike spectra x-ray pulses the pulse power is increased more than an order of magnitude compared to other techniques in the same wavelength range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA