Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 953: 176120, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260473

RESUMO

Aquatic organisms are challenged by changes in their external environment, such as temperature and salinity fluctuations. If these variables interacted with each other, the response of organisms to temperature changes would be modified by salinity and vice versa. We tested for potential interaction between temperature and salinity effects on freshwater, brackish, and marine organisms, including algae, macrophytes, heterotrophic protists, parasites, invertebrates, and fish. We performed a meta-analysis that compared the thermal tolerance (characterised by the temperature optimum, lower and upper temperature limits, and thermal breadth) at various salinities. The meta-analysis was based on 90 articles (algae: 15; heterotrophic protists: 1; invertebrates: 43; and fish: 31). Studies on macrophytes and parasites were lacking. We found that decreasing salinity significantly increased and decreased the lower and upper temperature limits, respectively, in all groups. Thus, a lowered salinity increased the thermal sensitivity of organisms. These findings mainly reflect the response of brackish and marine organisms to salinity changes, which dominated our database. The few studies on freshwater species showed that their lower thermal limits increased and the upper thermal limits decreased with increasing salinity, albeit statistically nonsignificant. Although non-significant, the response of thermal tolerance to salinity changes differed between various organism groups. It generally decreased in the order of: algae > invertebrates > fish. Overall, our findings indicate adverse effects of salinity changes on the temperature tolerance of aquatic organisms. For freshwater species, studies are comparatively scarce and further studies on their thermal performance at various salinity gradients are required to obtain more robust evidence for interactions between salinity and temperature tolerance. Considering test conditions such as acclimation temperature and potential infection with parasites in future studies may decrease the variability in the relationship between salinity and thermal tolerance.

2.
Ecol Evol ; 14(6): e11539, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895578

RESUMO

While macroinvertebrate dispersal operates at the individual level, predictions of their dispersal capabilities often rely on indirect proxies rather than direct measurements. To gain insight into the dispersal of individual specimens, it is crucial to mark (label) and capture individuals. Isotopic enrichment with 15N is a non-invasive method with the potential of labelling large quantities of macroinvertebrates. While the analysis of 15N is widely utilised in food web studies, knowledge on the specific utility of isotopic enrichment with 15N for mass labelling of macroinvertebrate individuals across different taxa and feeding types is limited. Previous studies have focused on single species and feeding types, leaving gaps in our understanding of the broader applicability of this method. Therefore, this study aimed to test and compare isotopic mass enrichment across several macroinvertebrate taxa and feeding types. We released 15NH4Cl at five stream reaches in North-Rhine Westphalia, Germany, and successfully enriched 12 distinct macroinvertebrate taxa (Crustacea and Insecta). Significant enrichment was achieved in active and passive filter feeders, grazers, shredders and predators, and predominantly showed positive correlations with the enrichment of the taxa's main food sources phytobenthos and particulate organic matter. Enrichment levels rose rapidly and peaked at distances between 50 m and 300 m downstream of the isotopic inlet; significant enrichment occurred up to 2000 m downstream of the isotopic inlet in all feeding types. Macroinvertebrate density estimates on the stream bottom averaged to a total of approximately 3.4 million labelled individuals of the 12 investigated taxa, thus showing the high potential of isotopic (15N) enrichment as a non-invasive method applicable for mass labelling across different macroinvertebrate feeding types. Hence, isotopic enrichment can greatly assist the analysis of macroinvertebrate dispersal through mark-and-recapture experiments, as it allows to measure the movement at the level of individual specimens.

3.
Sci Rep ; 13(1): 9474, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301923

RESUMO

In lotic freshwater ecosystems, the drift or downstream movement of animals (e.g., macroinvertebrates) constitutes a key dispersal pathway, thus shaping ecological and evolutionary patterns. There is evidence that macroinvertebrate drift may be modulated by parasites. However, most studies on parasite modulation of host drifting behavior have focused on acanthocephalans, whereas other parasites, such as microsporidians, have been largely neglected. This study provides new insight into possible seasonal and diurnal modulation of amphipod (Crustacea: Gammaridae) drift by microsporidian parasites. Three 72 h drift experiments were deployed in a German lowland stream in October 2021, April, and July 2022. The prevalence and composition of ten microsporidian parasites in Gammarus pulex clade E varied seasonally, diurnally, and between drifting and stationary specimens of G. pulex. Prevalence was generally higher in drifting amphipods than in stationary ones, mainly due to differences in host size. However, for two parasites, the prevalence in drift samples was highest during daytime suggesting changes in host phototaxis likely related to the parasite's mode of transmission and site of infection. Alterations in drifting behavior may have important implications for G. pulex population dynamics and microsporidians' dispersal. The underlying mechanisms are more complex than previously thought.


Assuntos
Anfípodes , Microsporídios , Parasitos , Animais , Anfípodes/parasitologia , Ecossistema , Estações do Ano , Interações Hospedeiro-Parasita , Crustáceos
4.
Sci Total Environ ; 872: 162196, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36781140

RESUMO

Our capacity to predict trajectories of ecosystem degradation and recovery is limited, especially when impairments are caused by multiple stressors. Recovery may be fast or slow and either complete or partial, sometimes result in novel ecosystem states or even fail completely. Here, we introduce the Asymmetric Response Concept (ARC) that provides a basis for exploring and predicting the pace and magnitude of ecological responses to, and release from, multiple stressors. The ARC holds that three key mechanisms govern population, community and ecosystem trajectories. Stress tolerance is the main mechanism determining responses to increasing stressor intensity, whereas dispersal and biotic interactions predominantly govern responses to the release from stressors. The shifting importance of these mechanisms creates asymmetries between the ecological trajectories that follow increasing and decreasing stressor intensities. This recognition helps to understand multiple stressor impacts and to predict which measures will restore communities that are resistant to restoration.


Assuntos
Ecossistema , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA