Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361626

RESUMO

Gestational diabetes mellitus (GDM), one of the most common endocrine pathologies during pregnancy, is defined as any degree of glucose intolerance with onset or first discovery in the perinatal period. Physiological changes that occur in pregnant women can lead to inflammation, which promotes insulin resistance. In the general context of worldwide increasing obesity in young females of reproductive age, GDM follows the same ascending trend. Changes in the intestinal microbiome play a decisive role in obesity and the development of insulin resistance and chronic inflammation, especially in patients with type 2 diabetes mellitus (T2D). To date, various studies have also associated intestinal dysbiosis with metabolic changes in women with GDM. Although host metabolism in women with GDM has not been fully elucidated, it is of particular importance to analyze the available data and to discuss the actual knowledge regarding microbiome changes with potential impact on the health of pregnant women and newborns. We analyzed peer-reviewed journal articles available in online databases in order to summarize the most recent findings regarding how variations in diet and metabolic status of GDM patients can contribute to alteration of the gut microbiome, in the same way that changes of the gut microbiota can lead to GDM. The most frequently observed alteration in the microbiome of patients with GDM was either an increase of the Firmicutes phylum, respectively, or a decrease of the Bacteroidetes and Actinobacteria phyla. Gut dysbiosis was still present postpartum and can impact the development of the newborn, as shown in several studies. In the evolution of GDM, probiotic supplementation and regular physical activity have the strongest evidence of proper blood glucose control, favoring fetal development and a healthy outcome for the postpartum period. The current review aims to summarize and discuss the most recent findings regarding the correlation between GDM and dysbiosis, and current and future methods for prevention and treatment (lifestyle changes, pre- and probiotics administration). To conclude, by highlighting the role of the gut microbiota, one can change perspectives about the development and progression of GDM and open up new avenues for the development of innovative therapeutic targets in this disease.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Microbioma Gastrointestinal , Resistência à Insulina , Humanos , Feminino , Recém-Nascido , Gravidez , Microbioma Gastrointestinal/fisiologia , Disbiose , Obesidade , Inflamação/prevenção & controle
2.
Front Cardiovasc Med ; 9: 856901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369298

RESUMO

The human microbiota contains microorganisms found on the skin, mucosal surfaces and in other tissues. The major component, the gut microbiota, can be influenced by diet, genetics, and environmental factors. Any change in its composition results in pathophysiological changes that can further influence the evolution of different conditions, including cardiovascular diseases (CVDs). The microbiome is a complex ecosystem and can be considered the metagenome of the microbiota. MicroRNAs (miRNAs) are speculated to interact with the intestinal microbiota for modulating gene expressions of the host. miRNAs represent a category of small non-coding RNAs, consisting of approximately 22 nucleotides, which can regulate gene expression at post-transcriptional level, by influencing the degradation of mRNA and modifying protein amounts. miRNAs display a multitude of roles, being able to influence the pathogenesis and progression of various diseases. Circulating miRNAs are stable against degradation, due to their enclosure into extracellular vesicles (EVs). This review aims to assess the current knowledge of the possible interactions between gut microbiota, miRNAs, and CVDs. As more scientific research is conducted, it can be speculated that personalized patient care in the future may include the management of gut microbiota composition and the targeted treatment against certain expression of miRNAs.

3.
Microorganisms ; 9(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34576810

RESUMO

The gut microbiome is represented by the genome of all microorganisms (symbiotic, potential pathogens, or pathogens) residing in the intestine. These ecological communities are involved in almost all metabolic diseases and cardiovascular diseases are not excluded. Atherosclerosis, with a continuously increasing incidence in recent years, is the leading cause of coronary heart disease and stroke by plaque rupture and intraplaque hemorrhage. Vascular calcification, a process very much alike with osteogenesis, is considered to be a marker of advanced atherosclerosis. New evidence, suggesting the role of dietary intake influence on the diversity of the gut microbiome in the development of vascular calcifications, is highly debated. Gut microbiota can metabolize choline, phosphatidylcholine, and L-carnitine and produce vasculotoxic metabolites, such as trimethylamine-N-oxide (TMAO), a proatherogenic metabolite. This review article aims to discuss the latest research about how probiotics and the correction of diet is impacting the gut microbiota and its metabolites in the atherosclerotic process and vascular calcification. Further studies could create the premises for interventions in the microbiome as future primary tools in the prevention of atherosclerotic plaque and vascular calcifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA