Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 108(9): 2865-2873, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38764335

RESUMO

Septoria leaf spot is a significant disease affecting cultivated stevia, potentially reducing yields by > 50%. The disease is caused by Septoria steviae, first identified in 1978 in Japan as a new pathogen of stevia. Understanding the origin of S. steviae could clarify how it spread to new production areas. To investigate this, 12 isolates of Septoria sp. were obtained from stevia's native range in the Amambay forests and field plantings in Paraguay from 2018 to 2020. These isolates underwent colony morphology and molecular characterization of Actin, ß-Tubulin, Calmodulin, ITS, LSU, RPB2, and TEF1α loci. GenBank sequences from S. steviae isolates collected in France, Japan, and the United States were included. Multilocus sequence phylogenetic analysis generated a maximum likelihood (ML) tree. The morphological characteristics of Paraguayan isolates were similar to those of previously reported S. steviae type cultures from Japan. The ML analysis showed that Paraguayan isolates formed a monophyletic group with S. steviae isolates from France, Japan, and the United States. During blotter tests, pycnidia and cirri of S. steviae were observed on multiple stevia seed surfaces from different sources. Further characterization confirmed viable pathogenic conidia of S. steviae. This observation suggests that S. steviae could be associated with stevia seed, possibly spreading from the center of origin to other countries. This research is the first to genetically characterize S. steviae from Paraguay and propose its potential spread mechanism from the center of origin to the rest of the world.


Assuntos
Filogenia , Doenças das Plantas , Stevia , Doenças das Plantas/microbiologia , Stevia/microbiologia , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Tipagem de Sequências Multilocus , Paraguai , Folhas de Planta/microbiologia , Japão
2.
Plant Dis ; 107(6): 1829-1838, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36415895

RESUMO

Septoria leaf spot (SLS) affects stevia leaves, reducing their quality. Estimates of SLS severity on different genotypes are made to identify resistance and as a basis to compare management approaches. The use of standard area diagrams (SADs) can improve the accuracy and reliability of severity estimates. In this study, we developed new SADs with six illustrations (0.5, 1, 10, 25, 40, and 75% severity). The SADs were validated by raters with and without experience in estimating SLS. Raters evaluated 40 leaf photos with SLS severities ranging from 0 to 100% without and with the SADs. Agreement (ρc), bias (Cb), precision (r), and intracluster correlation (ρ) coefficients were significantly closer to "true" severity values when the SADs was used by inexperienced (ρc = 0.89; Cb = 0.97; r = 0.90, ρ = 0.81) and experienced (ρc = 0.94; Cb = 0.99; r = 0.95, ρ = 0.91) raters. The SADs were tested under field conditions in Paraguay, Mexico, and the United States, with inexperienced raters assigned to two groups, one SADs trained and the other not trained, that estimated SLS severity three times: first, all raters without SADs and no time limit for the estimates; second, only the SADs-trained group used SADs and no time limit; and third, only the SADs-trained group used SADs, with a time limit of 10 s imposed per specimen assessment. Agreement and reliability of SLS severity estimates significantly improved when raters used the SADs without a time limit. The use of the new SADs improved the accuracy, precision, and reliability of SLS severity estimates, enhancing the uniformity in assessment across different stevia programs.


Assuntos
Ascomicetos , Stevia , Estados Unidos , México , Reprodutibilidade dos Testes , Paraguai , Ascomicetos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA