Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Psychol Methods ; 6(4): 352-70, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11778677

RESUMO

A Monte Carlo simulation examined full information maximum-likelihood estimation (FIML) in structural equation models with nonnormal indicator variables. The impacts of 4 independent variables were examined (missing data algorithm, missing data rate, sample size, and distribution shape) on 4 outcome measures (parameter estimate bias, parameter estimate efficiency, standard error coverage, and model rejection rates). Across missing completely at random and missing at random patterns, FIML parameter estimates involved less bias and were generally more efficient than those of ad hoc missing data techniques. However, similar to complete-data maximum-likelihood estimation in structural equation modeling, standard errors were negatively biased and model rejection rates were inflated. Simulation results suggest that recently developed correctives for missing data (e.g., rescaled statistics and the bootstrap) can mitigate problems that stem from nonnormal data.


Assuntos
Funções Verossimilhança , Modelos Estatísticos , Testes Psicológicos/estatística & dados numéricos , Psicologia Experimental/estatística & dados numéricos , Psicometria , Coleta de Dados/estatística & dados numéricos , Humanos , Método de Monte Carlo , Valores de Referência , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA