Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Acta Physiol (Oxf) ; 221(2): 115-128, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28429509

RESUMO

AIM: To determine the CO2 permeability (PCO2 ) of plasma membranes of cardiomyocytes. These cells were chosen because heart possesses the highest rate of O2 consumption/CO2 production in the body. METHODS: Cardiomyocytes were isolated from rat hearts using the Langendorff technique. Cardiomyocyte suspensions exhibited a vitality of 2-14% and were studied by the previously described mass spectrometric 18 O-exchange technique deriving PCO2 . We showed by mass spectrometry and by carbonic anhydrase (CA) staining that non-vital cardiomyocytes are free of CA and thus do not contribute to the mass spectrometric signal, which is determined exclusively by the fully functional vital cardiomyocytes. RESULTS: Lysed cardiomyocytes yielded an intracellular CA activity for vital cells of 5070; that is, the rate of CO2 hydration inside the cell is accelerated 5071-fold. Using this number, analyses of the mass spectrometric recordings from cardiomyocyte suspensions yield a PCO2 of 0.10 cm s-1 (SD ± 0.06, n = 15) at 37 °C. CONCLUSION: In comparison with the PCO2 of other cells, this value is quite high and about identical to that of the human red cell membrane. As no major protein CO2 channels such as aquaporins 1 and 4 are present in rat cardiac sarcolemma, the high PCO2 of this membrane is likely due to its low cholesterol content of about 0.2 (mol cholesterol)·(mol total membrane lipids)-1 . Previous work predicted a PCO2 of ≥0.1 cm s-1 from this level of cholesterol. We conclude that the low cholesterol establishes a PCO2 high enough to render the membrane resistance to CO2 diffusion almost negligible, even under conditions of maximal O2 consumption of the heart.


Assuntos
Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Membrana Celular/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Bicarbonatos/metabolismo , Anidrases Carbônicas/genética , Permeabilidade da Membrana Celular , Células Cultivadas , Colesterol/farmacologia , Regulação Enzimológica da Expressão Gênica , Espectrometria de Massas , Consumo de Oxigênio , Permeabilidade , Ratos
2.
FASEB J ; 20(12): 1974-81, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17012249

RESUMO

We report here the application of a previously described method to directly determine the CO2 permeability (P(CO2)) of the cell membranes of normal human red blood cells (RBCs) vs. those deficient in aquaporin 1 (AQP1), as well as AQP1-expressing Xenopus laevis oocytes. This method measures the exchange of (18)O between CO2, HCO3(-), and H2O in cell suspensions. In addition, we measure the alkaline surface pH (pH(S)) transients caused by the dominant effect of entry of CO2 vs. HCO3(-) into oocytes exposed to step increases in [CO2]. We report that 1) AQP1 constitutes the major pathway for molecular CO2 in human RBCs; lack of AQP1 reduces P(CO2) from the normal value of 0.15 +/- 0.08 (SD; n=85) cm/s by 60% to 0.06 cm/s. Expression of AQP1 in oocytes increases P(CO2) 2-fold and doubles the alkaline pH(S) gradient. 2) pCMBS, an inhibitor of the AQP1 water channel, reduces P(CO2) of RBCs solely by action on AQP1 as it has no effect in AQP1-deficient RBCs. 3) P(CO2) determinations of RBCs and pH(S) measurements of oocytes indicate that DIDS inhibits the CO2 pathway of AQP1 by half. 4) RBCs have at least one other DIDS-sensitive pathway for CO2. We conclude that AQP1 is responsible for 60% of the high P(CO2) of red cells and that another, so far unidentified, CO2 pathway is present in this membrane that may account for at least 30% of total P(CO2).


Assuntos
Aquaporina 1/metabolismo , Dióxido de Carbono/metabolismo , Membrana Eritrocítica/metabolismo , Animais , Bicarbonatos/metabolismo , Transporte Biológico , Permeabilidade da Membrana Celular/fisiologia , Membrana Eritrocítica/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Oócitos , Isótopos de Oxigênio/metabolismo , Xenopus laevis
3.
Transfus Clin Biol ; 13(1-2): 123-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16563834

RESUMO

The red cell membrane has an exceptionally high permeability for CO2, PCO2 approximately 0.15 cm/s, which is two to three orders of magnitude greater than that of some epithelial membranes and similarly greater than the permeability of the red cell membrane for HCO3-. As shown previously, this high PCO2 can be drastically inhibited by 10 microM 4,4'-diisothiocyanato-2,2'-stilbenedisulfonate (DIDS), indicating that membrane proteins may be involved in this high gas permeability. Here, we have studied the possible contribution of several blood group proteins to CO2 permeation across the red cell membrane by comparing PCO2 of red cells deficient in specific blood group proteins with that of normal red cells. While PCO2 of normal red cells is approximately 0.15 cm/s and that of Fy(null) and Jk(null) red cells is similar, PCO2's of Colton null (deficient in aquaporin-1) and Rh(null) cells (deficient in Rh/RhAG) are both reduced to about 0.07 cm/s, i.e. to about one half. In addition, the inhibitory effect of DIDS is about half as great in Rh(null) and in Colton null red cells as it is in normal red cells. We conclude that aquaporin-1 and Rh/RhAG proteins contribute substantially to the high permeability of the human red cell membrane for CO2. Together these proteins are responsible for 50% or more of the CO2 permeability of red cell membranes. The CO2 pathways of both proteins can be partly inhibited by DIDS, which is why this compound very effectively reduces membrane CO2 permeability.


Assuntos
Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Aquaporina 1/fisiologia , Antígenos de Grupos Sanguíneos/fisiologia , Proteínas Sanguíneas/fisiologia , Dióxido de Carbono/sangue , Membrana Eritrocítica/metabolismo , Glicoproteínas de Membrana/fisiologia , Aquaporina 1/deficiência , Aquaporina 1/genética , Transporte Biológico , Antígenos de Grupos Sanguíneos/genética , Proteínas Sanguíneas/deficiência , Proteínas Sanguíneas/genética , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sistema do Grupo Sanguíneo Duffy/genética , Sistema do Grupo Sanguíneo Duffy/fisiologia , Humanos , Transporte de Íons/efeitos dos fármacos , Sistema do Grupo Sanguíneo de Kell/genética , Sistema do Grupo Sanguíneo de Kell/fisiologia , Sistema do Grupo Sanguíneo Kidd/genética , Sistema do Grupo Sanguíneo Kidd/fisiologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/fisiologia , Pressão Parcial , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Sistema do Grupo Sanguíneo Rh-Hr/genética , Sistema do Grupo Sanguíneo Rh-Hr/fisiologia , Transportadores de Ureia
4.
Proc Natl Acad Sci U S A ; 98(10): 5904-9, 2001 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-11320218

RESUMO

We have used a fluorescence recovery after photobleaching (FRAP) technique to measure radial diffusion of myoglobin and other proteins in single skeletal and cardiac muscle cells. We compare the radial diffusivities, D(r) (i.e., diffusion perpendicular to the long fiber axis), with longitudinal ones, D(l) (i.e., parallel to the long fiber axis), both measured by the same technique, for myoglobin (17 kDa), lactalbumin (14 kDa), and ovalbumin (45 kDa). At 22 degrees C, D(l) for myoglobin is 1.2 x 10(-7) cm(2)/s in soleus fibers and 1.1 x 10(-7) cm(2)/s in cardiomyocytes. D(l) for lactalbumin is similar in both cell types. D(r) for myoglobin is 1.2 x 10(-7) cm(2)/s in soleus fibers and 1.1 x 10(-7) cm(2)/s in cardiomyocytes and, again, similar for lactalbumin. D(l) and D(r) for ovalbumin are 0.5 x 10(-7) cm(2)/s. In the case of myoglobin, both D(l) and D(r) at 37 degrees C are about 80% higher than at 22 degrees C. We conclude that intracellular diffusivity of myoglobin and other proteins (i) is very low in striated muscle cells, approximately 1/10 of the value in dilute protein solution, (ii) is not markedly different in longitudinal and radial direction, and (iii) is identical in heart and skeletal muscle. A Krogh cylinder model calculation holding for steady-state tissue oxygenation predicts that, based on these myoglobin diffusivities, myoglobin-facilitated oxygen diffusion contributes 4% to the overall intracellular oxygen transport of maximally exercising skeletal muscle and less than 2% to that of heart under conditions of high work load.


Assuntos
Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Mioglobina/metabolismo , Animais , Difusão , Corantes Fluorescentes , Temperatura Alta , Microinjeções , Músculo Esquelético/citologia , Miocárdio/citologia , Ratos , Ratos Wistar , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA