Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Inflamm Res ; 72(3): 651-667, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36723628

RESUMO

OBJECTIVE AND METHODS: IL-33 is present in endothelial, epithelial, and fibroblast-like cells and released upon cell injury. IL-33 reportedly induces mast-cell degranulation and is involved in various diseases, including allergic diseases. So, IL-33-related diseases seem to overlap with histamine-related diseases. In addition to the release from mast cells, histamine is newly formed by the induction of histidine decarboxylase (HDC). Some inflammatory and/or hematopoietic cytokines (IL-1, IL-3, etc.) are known to induce HDC, and the histamine produced by HDC induction is released without storage. We examined the involvement of HDC and histamine in the effects of IL-33. RESULTS: A single intraperitoneal injection of IL-33 into mice induced HDC directly and/or via other cytokines (including IL-5) within a few hours in various tissues, particularly strongly in hematopoietic organs. The major cells exhibiting HDC-induction were mast cells and c-kit+ cells in the bone marrow. HDC was also induced in non-mast cells in non-hematopoietic organs. HDC, histamine, and histamine H4 receptors (H4Rs) contributed to the suppression of IL-33-induced eosinophilia. CONCLUSION: IL-33 directly and indirectly (via IL-5) induces HDC in various cells, particularly potently in c-kit+ cells and mature mast cells, and the newly formed histamine contributes to the negative regulation of IL-33-induced eosinophilia via H4Rs.


Assuntos
Eosinofilia , Histidina Descarboxilase , Camundongos , Animais , Histamina , Interleucina-33 , Interleucina-5 , Citocinas , Eosinofilia/induzido quimicamente , Proteínas Proto-Oncogênicas c-kit
2.
Inflamm Res ; 71(12): 1603-1617, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308538

RESUMO

OBJECTIVE AND METHODS: Nitrogen-containing bisphosphonates (NBPs, anti-bone-resorptive agents) have inflammatory side-effects. Alendronate (Ale, an NBP) intradermally injected into mouse ear-pinnae together with LPS (bacterial cell-wall component) induces augmented ear-swelling that depends on IL-1 and neutrophils. Using this model, we examined histamine's involvement in Ale + LPS-induced inflammation. RESULTS: Ale increased histamine in ear-pinnae by inducing histidine decarboxylase (HDC). This induction was augmented by LPS. In HDC-deficient mice, such augmented ear-swelling was not induced. At peak-swelling, 74.5% of HDC-expressing cells were neutrophils and only 0.2% were mast cells (MCs). The augmented swelling was markedly reduced by a histamine H4-receptor (H4R) antagonist, but not by an H1R antagonist. In MC-deficient mice, unexpectedly, Ale + LPS induced prolonged ear-swelling that was augmented and more persistent than in normal mice. MCs highly expressed H4Rs and produced MCP-1(inflammatory cytokine that recruits macrophages) and IL-10 (anti-inflammatory cytokine) in response to an H4R agonist. CONCLUSION: Histamine produced by HDC-induction mainly in infiltrated neutrophils stimulates H4Rs, leading to augmented Ale + LPS-induced ear-swelling via MCP-1 production by MCs. Since MCP-1 is produced by other cells, too, the contribution of MCs and their H4Rs to augmented ear-swelling is partial. In the later phase of the swelling, MCs may be anti-inflammatory via IL-10 production.


Assuntos
Histamina , Receptores Histamínicos H4 , Animais , Camundongos , Anti-Inflamatórios , Difosfonatos/efeitos adversos , Histamina/metabolismo , Histidina Descarboxilase/genética , Inflamação/induzido quimicamente , Interleucina-10/genética , Lipopolissacarídeos , Camundongos Endogâmicos BALB C , Nitrogênio/efeitos adversos , Receptores Histamínicos H4/metabolismo
3.
Biol Pharm Bull ; 44(11): 1670-1680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719644

RESUMO

Bisphosphonates (BPs) are major anti-bone-resorptive drugs. Among them, the nitrogen-containing BPs (NBPs) exhibit much stronger anti-bone-resorptive activities than non-nitrogen-containing BPs (non-NBPs). However, BP-related osteonecrosis of the jaw (BRONJ) has been increasing without effective strategies for its prevention or treatment. The release of NBPs (but not non-NBPs) from NBP-accumulated jawbones has been supposed to cause BRONJ, even though non-NBPs (such as etidronate (Eti) and clodronate (Clo)) are given at very high doses because of their low anti-bone-resorptive activities. Our murine experiments have demonstrated that NBPs cause inflammation/necrosis at the injection site, and that Eti and Clo can reduce or prevent the inflammatory/necrotic effects of NBPs by inhibiting their entry into soft-tissue cells. In addition, our preliminary clinical studies suggest that Eti may be useful for treating BRONJ. Notably, Eti, when administered together with an NBP, reduces the latter's anti-bone-resorptive effect. Here, on the basis of the above background, we examined and compared in vitro interactions of NBPs, non-NBPs, and related substances with hydroxyapatite (HA), and obtained the following results. (i) NBPs bind rapidly to HA under pH-neutral conditions. (ii) At high concentrations, Eti and Clo inhibit NBP-binding to HA and rapidly expel HA-bound NBPs (potency Eti>>Clo). (iii) Pyrophosphate also inhibits NBP-binding to HA and expels HA-bound NBPs. Based on these results and those reported previously, we discuss (i) possible anti-BRONJ strategies involving the use of Eti and/or Clo to reduce jawbone-accumulated NBPs, and (ii) a possible involvement of pyrophosphate-mediated release of NBPs as a cause of BRONJ.


Assuntos
Difosfatos/farmacologia , Difosfonatos/metabolismo , Durapatita/metabolismo , Cálcio/farmacologia , Concentração de Íons de Hidrogênio , Magnésio/farmacologia , Nitrogênio
4.
J Bone Miner Res ; 36(9): 1866-1878, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34075628

RESUMO

Among the bisphosphonates (BPs), nitrogen-containing BPs (N-BPs) have much stronger anti-bone-resorptive actions than non-N-BPs. However, N-BPs have various side effects such as acute influenza-like reactions after their initial administration and osteonecrosis of the jawbones after repeated administration. The mechanisms underlying such effects remain unclear. To overcome these problems, it is important to profile the inflammatory nature of N-BPs. Here, we analyzed the inflammatory reactions induced in mouse ear pinnae by the N-BPs alendronate (Ale) and zoledronate (Zol). We found the following: (i) Ale and Zol each induced two phases of inflammation (early weak and late strong ear swelling); (ii) both phases were augmented by lipopolysaccharides (LPSs; cell-surface constituent of gram-negative bacteria, including oral bacteria), but prevented by inhibitors of the phosphate transporters of solute carrier 20/34 (SLC20/SLC34); (iii) macrophages and neutrophils were involved in both phases of Ale+LPS-induced ear-swelling; (iv) Ale increased or tended to increase various cytokines, and LPS augmented these effects, especially that on interleukin 1ß (IL-1ß); (v) adenosine triphosphate (ATP) was involved in both phases, and Ale alone or Ale+LPS increased ATP in ear pinnae; (vi) the augmented late-phase swelling induced by Ale+LPS depended on both IL-1 and neutrophil extracellular traps (NETs; neutrophil-derived net-like complexes); (vii) neutrophils, together with macrophages and dendritic cells, also functioned as IL-1ß-producing cells, and upon stimulation with IL-1ß, neutrophils produced NETs; (viii) stimulation of the purinergic 2X7 (P2X7) receptors by ATP induced IL-1ß in ear pinnae; (ix) NET formation by Ale+LPS was confirmed in gingiva, too. These results suggest that (i) N-BPs induce both early-phase and late-phase inflammation via ATP-production and P2X7 receptor stimulation; (ii) N-BPs and LPS induce mutually augmenting responses both early and late phases via ATP-mediated IL-1ß production by neutrophils, macrophages, and/or dendritic cells; and (iii) NET production by IL-1ß-stimulated neutrophils may mediate the late phase, leading to prolonged inflammation. These results are discussed in relation to the side effects seen in patients treated with N-BPs. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Armadilhas Extracelulares , Lipopolissacarídeos , Trifosfato de Adenosina , Animais , Difosfonatos/farmacologia , Armadilhas Extracelulares/metabolismo , Humanos , Inflamação , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Nitrogênio , Receptores Purinérgicos P2X7
5.
Int J Hematol ; 113(3): 348-361, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33398631

RESUMO

Histidine decarboxylase (HDC), a histamine synthase, is expressed in various hematopoietic cells and is induced by hematopoietic cytokines such as granulocyte colony-stimulating factor (G-CSF). We previously showed that nitrogen-containing bisphosphonate (NBP)-treatment induces extramedullary hematopoiesis via G-CSF stimulation. However, the function of HDC in NBP-induced medullary and extramedullary hematopoiesis remains unclear. Here, we investigated changes in hematopoiesis in wild-type and HDC-deficient (HDC-KO) mice. NBP treatment did not induce anemia in wild-type or HDC-KO mice, but did produce a gradual increase in serum G-CSF levels in wild-type mice. NBP treatment also enhanced Hdc mRNA expression and erythropoiesis in the spleen and reduced erythropoiesis in bone marrow and the number of vascular adhesion molecule 1 (VCAM-1)-positive macrophages in wild-type mice, as well as increased the levels of hematopoietic progenitor cells and proliferating cells in the spleen and enhanced expression of bone morphogenetic protein 4 (Bmp4), CXC chemokine ligand 12 (Cxcl12), and hypoxia inducible factor 1 (Hif1) in the spleen. However, such changes were not observed in HDC-KO mice. These results suggest that histamine may affect hematopoietic microenvironments of the bone marrow and spleen by changing hematopoiesis-related factors in NBP-induced extramedullary hematopoiesis.


Assuntos
Alendronato/antagonistas & inibidores , Medula Óssea/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Hematopoese Extramedular/efeitos dos fármacos , Histidina Descarboxilase/deficiência , Baço/efeitos dos fármacos , Alendronato/farmacologia , Alendronato/toxicidade , Anemia/induzido quimicamente , Animais , Medula Óssea/metabolismo , Proteína Morfogenética Óssea 4/biossíntese , Proteína Morfogenética Óssea 4/genética , Quimiocina CXCL12/biossíntese , Quimiocina CXCL12/genética , Indução Enzimática/efeitos dos fármacos , Células Eritroides/patologia , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos/sangue , Histamina/biossíntese , Histidina Descarboxilase/biossíntese , Histidina Descarboxilase/genética , Histidina Descarboxilase/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Baço/metabolismo
6.
Microscopy (Oxf) ; 70(3): 302-307, 2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-33277903

RESUMO

We have previously indicated that a single injection of alendronate, one of the nitrogen-containing bisphosphonates (NBPs), affects murine hematopoietic processes, such as the shift of erythropoiesis from bone marrow (BM) to spleen, disappearance of BM-resident macrophages, the increase of granulopoiesis in BM and an increase in the number of osteoclasts. NBPs induce apoptosis and the formation of giant osteoclasts in vitro and/or in patients undergoing long-term NBP treatment. Therefore, the time-kinetic effect of NBPs on osteoclasts needs to be clarified. In this study, we examined the effect of alendronate on mouse osteoclasts and osteoclastogenesis. One day after the treatment, osteoclasts lost the clear zone and ruffled borders, and the cell size decreased. After 2 days, the cytoplasm of osteoclasts became electron dense and the nuclei became pyknotic. Some of the cells had fragmented nuclei. After 4 days, osteoclasts had euchromatic nuclei attached to the bone surface. Osteoclasts had no clear zones or ruffled borders. After 7 days, osteoclasts formed giant osteoclasts via the fusion of multinuclear and mononuclear osteoclasts. These results indicate that NBPs affect osteoclasts and osteoclastogenesis via two different mechanisms.


Assuntos
Alendronato/farmacologia , Apoptose/efeitos dos fármacos , Difosfonatos/farmacologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/ultraestrutura , Osteogênese/efeitos dos fármacos , Alendronato/química , Animais , Conservadores da Densidade Óssea/farmacologia , Osso e Ossos/efeitos dos fármacos , Difosfonatos/química , Eritropoese/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Nitrogênio/química
7.
Anat Rec (Hoboken) ; 304(5): 1136-1150, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33034098

RESUMO

Histidine decarboxylase (HDC), histamine synthase, is expressed in hematopoietic stem cells and in lineage-committed progenitors in the bone marrow (BM). However, the role of histamine in hematopoiesis is not well described. To evaluate the role of histamine in hematopoiesis, we analyzed the changes in HDC expression at hematopoietic sites, the BM, spleen, and liver of 2-, 3-, and 6-week-old wild-type mice. We also performed morphological analyses of the hematopoietic sites using HDC-deficient (HDC-KO) mice. In wild-type adults, HDC expression in the BM was higher than that in the spleen and liver and showed an age-dependent increase. Histological analysis showed no significant change in the adult BM and spleen of HDC-KO mice compared to wild-type mice. In the liver, HDC expression was temporarily increased at 3 weeks and decreased at 6 weeks of age. Morphological analysis of the liver revealed more numerous hematopoietic colonies and megakaryocytes in HDC-KO mice compared to wild-type mice at 2 and 3 weeks of age, whereas no changes were observed in adults. Most of these hematopoietic colonies consisted of B220-positive B-lymphocytes and TER119-positive erythroblasts and were positive for the cell proliferation marker PCNA. Notably, these hematopoietic colonies declined in HDC-KO mice upon N-acetyl histamine treatment. A significant increase in the expression of hematopoiesis-related cytokines, Il3, Il7, Epo, Gcsf, and Cxcl12 mRNA was observed in the liver of 3-week-old HDC-KO mice compared to wild-type mice. These results suggest that histamine-deficiency may maintain an microenvironment suitable for hematopoiesis by regulating hematopoiesis-related cytokine expression in the liver of postnatal mice.


Assuntos
Hematopoese Extramedular/fisiologia , Histidina Descarboxilase/metabolismo , Fígado/metabolismo , Baço/metabolismo , Animais , Histidina Descarboxilase/genética , Camundongos , Camundongos Knockout
8.
Yakugaku Zasshi ; 140(1): 63-79, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-31902887

RESUMO

Since the first report in 2003, bisphosphonate-related osteonecrosis of the jaw (BRONJ) has been increasing, without effective clinical strategies. Osteoporosis is common in elderly women, and bisphosphonates (BPs) are typical and widely used anti-osteoporotic or anti-bone-resorptive drugs. BRONJ is now a serious concern in dentistry. As BPs are pyrophosphate analogues and bind strongly to bone hydroxyapatite, and the P-C-P structure of BPs is non-hydrolysable, they accumulate in bones upon repeated administration. During bone-resorption, BPs are taken into osteoclasts and exhibit cytotoxicity, producing a long-lasting anti-bone-resorptive effect. BPs are divided into nitrogen-containing BPs (N-BPs) and non-nitrogen-containing BPs (non-N-BPs). N-BPs have far stronger anti-bone-resorptive effects than non-N-BPs, and BRONJ is caused by N-BPs. Our murine experiments have revealed the following. N-BPs, but not non-N-BPs, exhibit direct and potent inflammatory/necrotic effects on soft-tissues. These effects are augmented by lipopolysaccharide (the inflammatory component of bacterial cell-walls) and the accumulation of N-BPs in jawbones is augmented by inflammation. N-BPs are taken into soft-tissue cells via phosphate-transporters, while the non-N-BPs etidronate and clodronate inhibit this transportation. Etidronate, but not clodronate, has the effect of expelling N-BPs that have accumulated in bones. Moreover, etidronate and clodronate each have an analgesic effect, while clodronate has an anti-inflammatory effect via inhibition of phosphate-transporters. These findings suggest that BRONJ may be induced by phosphate-transporter-mediated and infection-promoted mechanisms, and that etidronate and clodronate may be useful for preventing and treating BRONJ. Our clinical trials support etidronate being useful for treating BRONJ, although additional clinical trials of etidronate and clodronate are needed.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/prevenção & controle , Conservadores da Densidade Óssea/efeitos adversos , Difosfonatos/efeitos adversos , Animais , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/tratamento farmacológico , Conservadores da Densidade Óssea/metabolismo , Conservadores da Densidade Óssea/uso terapêutico , Ensaios Clínicos como Assunto , Ácido Clodrônico/química , Ácido Clodrônico/metabolismo , Ácido Clodrônico/farmacologia , Ácido Clodrônico/uso terapêutico , Difosfonatos/química , Difosfonatos/metabolismo , Difosfonatos/uso terapêutico , Ácido Etidrônico/química , Ácido Etidrônico/metabolismo , Ácido Etidrônico/farmacologia , Ácido Etidrônico/uso terapêutico , Humanos , Inflamação , Arcada Osseodentária/metabolismo , Camundongos , Nitrogênio , Proteínas de Transporte de Fosfato/antagonistas & inibidores , Ratos
9.
Biol Pharm Bull ; 42(8): 1253-1267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31366863

RESUMO

Systemic platelet behaviors in experimental animals are often assessed by infusion of isotope-labeled platelets and measuring them under anesthesia. However, such procedures alter, therefore may not reveal, real-life platelet behaviors. 5-Hydroxytryptamine (5HT or serotonin) is present within limited cell-types, including platelets. In our studies, by measuring 5HT as a platelet-marker in non-anesthetized mice, we identified stimulation- and time-dependent accumulations in liver, lung, and/or spleen as important systemic platelet behaviors. For example, intravenous, intraperitoneal, or intragingival injection of lipopolysaccharide (LPS, a cell-wall component of Gram-negative bacteria), interleukin (IL)-1, or tumor necrosis factor (TNF)-α induced hepatic platelet accumulation (HPA) and platelet translocation into the sinusoidal and perisinusoidal spaces or hepatocytes themselves. These events occurred "within a few hours" of the injection, caused hypoglycemia, and exhibited protective or causal effects on hepatitis. Intravenous injection of larger doses of LPS into normal mice, or intravenous antigen-challenge to sensitized mice, induced pulmonary platelet accumulation (PPA), as well as HPA. These reactions occurred "within a few min" of the LPS injection or antigen challenge and resulted in shock. Intravenous injection of 5HT or a catecholamine induced a rapid PPA "within 6 s." Intravenous LPS injection, within a minute, increased the pulmonary catecholamines that mediate the LPS-induced PPA. Macrophage-depletion from liver and spleen induced "day-scale" splenic platelet accumulation, suggesting the spleen is involved in clearing senescent platelets. These findings indicate the usefulness of 5HT as a marker of platelet behaviors, and provide a basis for a discussion of the roles of platelets as both "defenders" and "guardians."


Assuntos
Plaquetas/fisiologia , Fígado/fisiologia , Pulmão/fisiologia , Serotonina/fisiologia , Baço/fisiologia , Animais , Humanos , Camundongos
10.
Clin Exp Allergy ; 49(10): 1362-1373, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325186

RESUMO

BACKGROUND: We previously reported that (a) lipopolysaccharide (LPS) is a potent adjuvant for inducing Nickel (Ni) allergy in mice at both the sensitization and elicitation steps, (b) LPS induces Interleukin-1 (IL-1) and histidine decarboxylase (HDC, the histamine-forming enzyme), and IL-1 induces HDC, (c) Ni allergy is induced in mast cell-deficient, but not IL-1-deficient (IL-1-KO) or HDC-KO mice. OBJECTIVE: To examine the roles of IL-1 and HDC (or histamine) and their interrelationship during the establishment of Ni allergy. METHODS: Ni (NiCl2 ) 1 mmol/L containing IL-1ß and/or histamine was injected intraperitoneally (sensitization step). Ten days later, test substance(s) were intradermally injected into ear pinnas (elicitation step), and ear swelling was measured. RESULTS: In wild-type mice, Ni + LPS or Ni + IL-1ß injection at sensitization step followed by Ni alone at elicitation step induced Ni allergy. In IL-1-KO, injection of Ni + IL-1ß (but not Ni + histamine) was required at both sensitization and elicitation steps to induce Ni allergy. In HDC-KO, Ni + IL-1ß + histamine at sensitization step followed by Ni + histamine at elicitation step induced Ni allergy. In histamine H1 receptor-deficient mice, IL-1ß induced HDC, but was ineffective as an adjuvant for inducing Ni allergy. In wild-type mice, injection into ear pinnas of Ni 10 mmol/L alone or Ni 1 mmol/L + LPS induced IL-1ß, HDC and a prolonged swelling of ear pinnas. In non-sensitized mice, injection of IL-1ß by itself into ear pinnas in IL-1-KO mice induced prolonged ear swelling. Ni augmented IL-1 production (both IL-1α and IL-1ß) and HDC induction in wild-type mice sensitized to Ni. CONCLUSIONS: In mice: (a) for inducing Ni allergy, IL-1 is essential at both the sensitization and elicitation steps, and HDC induction is involved in the effect of IL-1, (b) stimulation of H1 receptor is also essential for inducing Ni allergy at both sensitization and elicitation steps, and (c) the 'sensitization to Ni' state may be a state where tissues are primed for augmented production of IL-1α and/or IL-1ß in response to Ni. (within 300 words, now 300).


Assuntos
Histamina/imunologia , Hipersensibilidade/imunologia , Interleucina-1alfa/imunologia , Interleucina-1beta/imunologia , Níquel/toxicidade , Receptores Histamínicos H1/imunologia , Animais , Hipersensibilidade/genética , Hipersensibilidade/patologia , Interleucina-1alfa/genética , Interleucina-1beta/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores Histamínicos H1/genética
11.
Biol Pharm Bull ; 42(6): 929-936, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31155589

RESUMO

Bisphosphonates (BPs) containing nitrogen (N-BPs) exhibit far stronger anti-bone-resorptive effects than non-N-BPs. However, repeated administration of N-BPs causes osteonecrosis selectively in jawbones. As BPs accumulate in large amounts within inflamed bones, any N-BP released from the pool accumulated within jawbones might directly act on cells in the surrounding soft-tissues and induce inflammation or necrosis. Here, we examined the local and systemic effects of zoledronate (the most potent N-BP with the highest incidence of jawbone-necrosis) on inflammatory cytokines in mice. Locally within ear-pinnas: (i) zoledronate induced long-lasting accumulation of interleuikin-1ß (IL-1ß) and IL-18, but not tumor necrosis factor-α (TNF-α), (ii) zoledronate and lipopolysaccharide (LPS, a cell-wall component of Gram-negative bacteria) mutually augmented the productions of IL-1ß, IL-18, and TNF-α, and (iii) oxidronate (a toxic non-N-BP) by itself produced not only IL-1ß and IL-18, but also TNF-α. In systemic experiments using intraperitoneal injection of zoledronate and/or LPS, (i) zoledronate by itself increased none of the above cytokines in serum, and (ii) in mice pretreated (3 d before) with zoledronate, the LPS-induced increases in serum IL-1ß and IL-18 were greatly augmented with a delayed slight TNF-α augmentation. These results, together with previous ones, suggest that (a) pro-IL-1ß and pro-IL-18 accumulate within cells in soft-tissues exposed to N-BPs, and infection may augment not only their production, but also the release of their mature forms, (b) IL-1ß and IL-18 (possibly together with TNF-α) may play important roles in N-BP-induced inflammation and/or necrosis, and (c) mechanisms underlying the cytotoxic effects of BPs may differ between N-BPs and non-N-BPs.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Pavilhão Auricular/efeitos dos fármacos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ácido Zoledrônico/farmacologia , Animais , Pavilhão Auricular/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos BALB C
12.
Biol Pharm Bull ; 42(2): 164-172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30713248

RESUMO

Bisphosphonates (BPs) bind strongly to bone and exhibit long-acting anti-bone-resorptive effects. Among BPs, nitrogen-containing BPs (N-BPs) have far stronger anti-bone-resorptive effects than non-N-BPs. However, N-BPs induce acute inflammatory reactions (fever, arthralgia and myalgia, etc.) after their first injection. The mechanisms underlying these side effects remain unclear. Zoledronate (one of the most potent N-BPs) is given intravenously to patients, and the side-effect incidence is reportedly the highest among N-BPs. Our murine experiments have clarified that (a) intraperitoneally injected N-BPs induce various inflammatory reactions, including a production of interleukin-1 (IL-1) (a typical inflammatory cytokine), and these inflammatory reactions are weak in IL-1-deficient mice, (b) subcutaneously injected N-BPs induce inflammation/necrosis at the injection site, (c) lipopolysaccharide (LPS; a cell-wall component of Gram-negative bacteria) and N-BPs mutually augment their inflammatory/necrotic effects, (d) the non-N-BP clodronate can reduce N-BPs' inflammatory/necrotic effects. However, there are few animal studies on the side effects of intravenously injected N-BPs. Here, we found in mice that (i) intravenous zoledronate exhibited weaker inflammatory effects than intraperitoneal zoledronate, (ii) in mice given intravenous zoledronate, LPS-induced production of IL-1α and IL-1ß was augmented in various tissues, including bone, resulting in them increasing in serum, and (iii) clodronate (given together with zoledronate) prevented such augmentation and enhanced, slightly but significantly, zoledronate's anti-bone-resorptive effect. These results suggest that infection may be a factor promoting the acute inflammatory side effects of N-BPs via augmented production of IL-1 in various tissues (including bone), and that clodronate may be useful to reduce or prevent such side effects.


Assuntos
Ácido Clodrônico/farmacologia , Interleucina-1beta/biossíntese , Ácido Zoledrônico/farmacologia , Animais , Conservadores da Densidade Óssea/uso terapêutico , Sinergismo Farmacológico , Inflamação/sangue , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-1beta/sangue , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Músculos Peitorais/efeitos dos fármacos , Músculos Peitorais/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo
13.
Naunyn Schmiedebergs Arch Pharmacol ; 392(3): 349-357, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30515539

RESUMO

Etidronate is widely used as a therapeutic agent for osteoporosis. We have recently shown that intrathecal administration of etidronate into mice produces an analgesic effect against the capsaicin-induced nociceptive behavior. However, the effect of etidronate on neuropathic pain at the spinal level remains unknown. Therefore, we examined whether etidronate attenuates pain after partial sciatic nerve ligation (PSNL). We evaluated tactile allodynia 7 days after PSNL by measuring paw withdrawal with the von Frey filament test. The mRNA and protein levels of SLC17A9 in the ipsilateral lumbar dorsal spinal cord of PSNL-operated mice were determined using real-time PCR and western blotting, respectively. PSNL-induced tactile allodynia was attenuated by oral and intrathecal administration of etidronate, with maximum efficiency at 90 and 60 min after injection, respectively. The anti-allodynic effect of intrathecally administered etidronate was completely inhibited by an intrathecal administration of adenosine triphosphate (ATP). The solute carrier family, SLC17, mediates the transport of pain transmitters, like ATP and glutamate. Indeed, we detected several members of the SLC17 family in the mouse dorsal lumbar spinal cord. Among the detected mRNAs, only Slc17a9, encoding for neuronal vesicular ATP transporter, was significantly increased upon PSNL. SLC17A9 protein levels were also significantly increased. In mice subjected to PSNL, SLC17A9 was present in neurons and microglia, but not in astrocytes of the lumbar superficial dorsal horn. Collectively, our results suggest that etidronate produces its anti-allodynic effects by inhibiting SLC17A9-dependent exocytotic ATP release from the dorsal horn in mice subjected to PSNL.


Assuntos
Trifosfato de Adenosina/metabolismo , Analgésicos , Ácido Etidrônico , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Ácido Etidrônico/farmacologia , Ácido Etidrônico/uso terapêutico , Hiperalgesia/metabolismo , Injeções Espinhais , Ligadura , Masculino , Camundongos , Neuralgia/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Estimulação Física , Nervo Isquiático/cirurgia , Medula Espinal/metabolismo
14.
Cell Rep ; 23(8): 2354-2364, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29791847

RESUMO

Metabolic immunomodulation involving IL-1 has been investigated for unfavorable metabolic effects, including obesity, but a potentially favorable role for IL-1 remains unclear. Here, we find mechanistic interactions between working skeletal muscles and locally recruited neutrophils expressing IL-1ß, which supports muscle performance through priming exercise-dependent GLUT4 translocation. Thus, during exercise, both IL-1α/ß-deficient and neutrophil-depleted mice similarly exhibit increased fatigability associated with impaired muscle glucose homeostasis due to GLUT4 dysregulation. Deficiency of IL-1-producing neutrophils results in intrinsic abnormalities represented by aberrant Rac1 signaling and irregular GLUT4-storage vesicles, suggesting that these properties are maintained by local IL-1 produced by recruited neutrophils upon exercise, possibly on a daily basis. We propose that neutrophils are highly engaged in skeletal muscle performance via IL-1 regulation, which coordinates favorable inflammatory microenvironments supporting muscle glucose metabolism.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Interleucina-1/metabolismo , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Neutrófilos/metabolismo , Animais , Metabolismo dos Carboidratos , Homeostase , Interleucina-6/metabolismo , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Condicionamento Físico Animal , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Caminhada , Proteínas rac1 de Ligação ao GTP/metabolismo
15.
Biol Pharm Bull ; 40(8): 1326-1330, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769013

RESUMO

Recent studies suggest that histamine-a regulator of the microcirculation-may play important roles in exercise. We have shown that the histamine-forming enzyme histidine decarboxylase (HDC) is induced in skeletal muscles by prolonged muscular work (PMW). However, histological analysis of such HDC induction is lacking due to appropriate anti-HDC antibodies being unavailable. We also showed that the inflammatory cytokines interleukin (IL)-1 and tumor necrosis factor (TNF)-α can induce HDC, and that PMW increases both IL-1α and IL-1ß in skeletal muscles. Here, we examined the effects (a) of PMW on the histological evidence of HDC induction and (b) of IL-1ß and TNF-α on HDC activity in skeletal muscles. By immunostaining using a recently introduced commercial polyclonal anti-HDC antibody, we found that cells in the endomysium and around blood vessels, and also some muscle fibers themselves, became HDC-positive after PMW. After PMW, TNF-α, but not IL-1α or IL-1ß, was detected in the blood serum. The minimum intravenous dose of IL-1ß that would induce HDC activity was about 1/10 that of TNF-α, while in combination they synergistically augmented HDC activity. These results suggest that PMW induces HDC in skeletal muscles, including cells in the endomysium and around blood vessels, and also some muscle fibers themselves, and that IL-1ß and TNF-α may cooperatively mediate this induction.


Assuntos
Citocinas/sangue , Histamina/metabolismo , Histidina Descarboxilase/metabolismo , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Animais , Citocinas/farmacologia , Masculino , Camundongos Endogâmicos BALB C
16.
Proc Natl Acad Sci U S A ; 114(31): E6297-E6305, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28720702

RESUMO

Despite the high incidence of neuropathic and inflammatory pain worldwide, effective drugs with few side effects are currently unavailable for the treatment of chronic pain. Recently, researchers have proposed that inhibitors of purinergic chemical transmission, which plays a key role in the pathological pain response, may allow for targeted treatment of pathological neuropathic and inflammatory pain. However, such therapeutic analgesic agents have yet to be developed. In the present study, we demonstrated that clodronate, a first-generation bisphosphonate with comparatively fewer side effects than traditional treatments, significantly attenuates neuropathic and inflammatory pain unrelated to bone abnormalities via inhibition of vesicular nucleotide transporter (VNUT), a key molecule for the initiation of purinergic chemical transmission. In vitro analyses indicated that clodronate inhibits VNUT at a half-maximal inhibitory concentration of 15.6 nM without affecting other vesicular neurotransmitter transporters, acting as an allosteric modulator through competition with Cl- A low concentration of clodronate impaired vesicular ATP release from neurons, microglia, and immune cells. In vivo analyses revealed that clodronate is more effective than other therapeutic agents in attenuating neuropathic and inflammatory pain, as well as the accompanying inflammation, in wild-type but not VNUT -/- mice, without affecting basal nociception. These findings indicate that clodronate may represent a unique treatment strategy for chronic neuropathic and inflammatory pain via inhibition of vesicular ATP release.

17.
Biol Pharm Bull ; 40(6): 739-750, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28566618

RESUMO

Bisphosphonates (BPs), with a non-hydrolysable P-C-P structure, are cytotoxic analogues of pyrophosphate, bind strongly to bone, are taken into osteoclasts during bone-resorption and exhibit long-acting anti-bone-resorptive effects. Among the BPs, nitrogen-containing BPs (N-BPs) have far stronger anti-bone-resorptive effects than non-N-BPs. In addition to their pyrogenic and digestive-organ-injuring side effects, BP-related osteonecrosis of jaws (BRONJ), mostly caused by N-BPs, has been a serious concern since 2003. The mechanism underlying BRONJ has proved difficult to unravel, and there are no solid strategies for treating and/or preventing BRONJ. Our mouse experiments have yielded the following results. (a) N-BPs, but not non-N-BPs, exhibit direct inflammatory and/or necrotic effects on soft tissues. (b) These effects are augmented by lipopolysaccharide, a bacterial-cell-wall component. (c) N-BPs are transported into cells via phosphate transporters. (d) The non-N-BPs etidronate (Eti) and clodronate (Clo) competitively inhibit this transportation (potencies, Clo>Eti) and reduce and/or prevent the N-BP-induced inflammation and/or necrosis. (e) Eti, but not Clo, can expel N-BPs that have accumulated within bones. (f) Eti and Clo each have an analgesic effect (potencies, Clo>Eti) via inhibition of phosphate transporters involved in pain transmission. From these findings, we propose that phosphate-transporter-mediated and inflammation/infection-promoted mechanisms underlie BRONJ. To treat and/or prevent BRONJ, we propose (i) Eti as a substitution drug for N-BPs and (ii) Clo as a combination drug with N-BPs while retaining their anti-bone-resorptive effects. Our clinical trials support this role for Eti (we cannot perform such trials using Clo because Clo is not clinically approved in Japan).


Assuntos
Analgésicos/efeitos adversos , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Conservadores da Densidade Óssea/efeitos adversos , Denosumab/efeitos adversos , Difosfonatos/efeitos adversos , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/tratamento farmacológico , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/imunologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/prevenção & controle , Conservadores da Densidade Óssea/química , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/imunologia , Denosumab/farmacologia , Difosfonatos/química , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Humanos , Interleucina-1/imunologia , Nitrogênio/química
18.
J Invest Dermatol ; 137(5): 1082-1093, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28108299

RESUMO

We established a mouse model of contact hypersensitivity (CHS) to hydroquinone (HQ), a widespread chemical in our environment. HQ was painted onto flanks; then, HQ was challenged by painting onto ear pinnas on days 7 and 14. The CHS after the second challenge was markedly greater than that after the first challenge. Both challenges increased thymic stromal lymphopoietin and T helper type 2 cytokines in ear pinnas, whereas IFN-γ (typical T helper type 1 cytokine) was decreased, despite an increase in IL-18 (typical IFN-γ inducer). In nude mice (T cell-reduced), although a first challenge induced CHS, a second challenge did not augment it. In severe combined immunodeficient, severe combined immunodeficient-beige, and IL-1-deficient mice, CHS was not induced. However, CHS was inducible in severe combined immunodeficient-beige mice after transfer of natural killer cells from HQ-sensitized normal mice. Tretinoin (used for enhancing the skin-whitening effect of HQ) and resin monomers (used to prevent polymerization of HQ) lowered the HQ concentration needed to establish sensitization to HQ. The augmented CHS after a second challenge was reduced by JNJ7777120, dexamethasone, suplatast tosilate (T helper type 2-cytokine inhibitor), and anti-thymic stromal lymphopoietin antibody. These results suggest that (i) thymic stromal lymphopoietin, IL-1, and T and/or natural killer cells are important in establishing and augmenting CHS to HQ and (ii) inflammatory chemicals may promote CHS to HQ as adjuvants.


Assuntos
Imunidade Adaptativa/imunologia , Dermatite de Contato/imunologia , Hidroquinonas/imunologia , Imunidade Inata/imunologia , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Interferon gama/imunologia , Interleucina-1/imunologia , Interleucina-18/imunologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Linfócitos T/imunologia , Linfopoietina do Estroma do Timo
19.
Biol Pharm Bull ; 40(1): 25-33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28049945

RESUMO

Bisphosphonates (BPs) are used against diseases with enhanced bone resorption. Those classed as nitrogen-containing BPs (N-BPs) exhibit much stronger anti-bone-resorptive effects than non-nitrogen-containing BPs (non-N-BPs). However, N-BPs carry the risk of inflammatory/necrotic side effects. Depending on their side-chains, BPs are divided structurally into cyclic and non-cyclic types. We previously found in mice that etidronate and clodronate (both non-cyclic non-N-BPs) could reduce the inflammatory effects of all three N-BPs tested (cyclic and non-cyclic types), possibly by inhibiting their entry into soft-tissue cells via SLC20 and/or SLC34 phosphate transporters. Tiludronate is the only available cyclic non-N-BP, but its effects on N-BPs' side effects have not been examined. Here, we compared the effects of etidronate, clodronate, and tiludronate on the inflammatory effects of six N-BPs used in Japan [three cyclic (risedronate, zoledronate, minodronate) and three non-cyclic (pamidronate, alendronate, ibandronate)]. Inflammatory effects were evaluated in mice by measuring the hind-paw-pad swelling induced by subcutaneous injection of an N-BP (either alone or mixed with a non-N-BP) into the hind-paw-pad. All of six N-BPs tested induced inflammation. Etidronate, clodronate, and the SLC20/34 inhibitor phosphonoformate inhibited this inflammation. Tiludronate inhibited the inflammatory effects of all N-BPs except ibandronate and minodronate, which have higher molecular weights than the other N-BPs. The mRNAs of SLC20a1, SLC20a2, and SLC34a2 (but not of SLC34a1 and SLC34a3) were detected in the soft-tissues of hind-paw-pads. These results suggest that etidronate, clodronate, and phosphonoformate may act non-selectively on phosphate transporter members, while tiludronate may not act on those transporting N-BPs of higher molecular weights.


Assuntos
Difosfonatos/efeitos adversos , Difosfonatos/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Animais , Reabsorção Óssea/tratamento farmacológico , Difosfonatos/farmacologia , Edema/metabolismo , Masculino , Camundongos , Nitrogênio , RNA Mensageiro/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/genética
20.
Int Immunopharmacol ; 43: 40-52, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27939824

RESUMO

Intravenously injected lipopolysaccharides (LPS) rapidly induce pulmonary platelet accumulation (PPA) and anaphylaxis-like shock (ALS) in mice. Macrophages reportedly release catecholamines rapidly upon stimulation with LPS. Here, we examined the involvement of macrophage-derived catecholamines in LPS-induced PPA and ALS. A catecholamine or Klebsiella O3 (KO3) LPS was intravenously injected into mice, with 5-hydroxytryptamine in the lung being measured as a platelet marker. The tested catecholamines induced PPA, leading to shock. Their minimum shock-inducing doses were at the nmol/kg level. The effects of epinephrine and norepinephrine were inhibited by prazosin (α1 antagonist) and by yohimbine (α2 antagonist), while dopamine's were inhibited only by prazosin. Use of synthetic adrenergic α1- and/or α2-agonists, platelet- or macrophage-depleted mice, a complement C5 inhibitor and C5-deficient mice revealed that (a) α2-receptor-mediated PPA and shock depend on both macrophages and complements, while α1-receptor-mediated PPA and shock depend on neither macrophages nor complements, (b) the PPA and ALS induced by KO3-LPS depend on α1- and α2-receptors, macrophages, and complements, and (c) KO3-LPS-induced PPA is preceded by catecholamines decreasing in serum. Together, these results suggest the following. (i) Catecholamines may stimulate macrophages and release complement C5 via α2-receptors. (ii) Macrophage-derived catecholamines may mediate LPS-induced PPA and ALS. (iii) Moderate PPA may serve as a defense mechanism to remove excess catecholamines from the circulation by promoting their rapid uptake, thus preventing excessive systemic effects. (iv) The present findings might provide an insight into possible future pharmacological strategies against such diseases as shock and acute respiratory distress syndrome.


Assuntos
Anafilaxia/tratamento farmacológico , Plaquetas/efeitos dos fármacos , Catecolaminas/farmacologia , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Anafilaxia/induzido quimicamente , Animais , Plaquetas/fisiologia , Células Cultivadas , Complemento C5/genética , Complemento C5/metabolismo , Humanos , Lipopolissacarídeos/imunologia , Pulmão/efeitos dos fármacos , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Prazosina/farmacologia , Serotonina/metabolismo , Ioimbina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA