Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Zookeys ; 898: 103-120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31875089

RESUMO

A new species of cave snail (Littorinimorpha: Cochliopidae) in the genus Antrorbis is described from the dark zone of two caves in the Appalachian Valley and Ridge province in eastern Tennessee, United States. The Tennessee Cavesnail, Antrorbis tennesseensis Perez, Shoobs, Gladstone, & Niemiller, sp. nov. is distinguished from its only known congener, Antrorbis breweri, by the absence of raised tubercles on its finely spirally striate protoconch, and its unique radular formula. Moreover, A. tennesseensis is genetically distinct from A. breweri based on substantial divergence at the mitochondrial CO1 locus. This is the first cavesnail to be described from the Appalachian Valley and Ridge (AVR) physiographic province in the state of Tennessee, which previously represented a substantial gap in the distribution of stygobitic (i.e., aquatic, subterranean-obligate) gastropods.

2.
Front Microbiol ; 7: 1955, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018299

RESUMO

Enhanced monsoon duration and soil acidification from acid rain are expected to impact the distribution of microbial communities in surface and subsurface environments, although these impacts are poorly understood for most systems. In central China, soluble carbonate bedrock forms extensive karst landscapes. Current predictions are that the amount of monsoonal precipitation and acid rainfall in central China will increase, which is expected to lead to changes in the pH balance of karst ecosystems. To evaluate the role of pH, total organic carbon, and other geochemical parameters (e.g., Ca2+, Mg2+, NH4+, NOx, SO42-) in shaping bacterial communities within a single karst system in central China, samples were collected from the thin surface soils overlying Heshang Cave, cave sediments, and weathered cave passage rocks from the entrance, twilight, and dark zones, as well as from epikarstic drip waters inside the cave. Illumina sequencing of 16S rRNA genes and multivariate statistical analyses revealed that each tested community was distinct and the community variability was significantly correlated with pH, total organic carbon, and potassium concentrations. Specifically, surface soils were dominated by Acidobacteria, Verrucomicrobia and Planctomycetes, and diversity significantly decreased with acidic pH values. Nitrospirae, Gemmatimonadetes, Firmicutes, and Chloroflexi were unique to cave sediments, while Actinobacteria and Proteobacteria dominated weathered rocks and drip waters, respectively. The results reveal important implications regarding the effects of acidification on bacterial communities in karst areas, and on the control of pH in shaping bacterial communities throughout a karst system. Increased water flux into and through karst habitats due to monsoonal precipitation may result in deeper penetration of acidic solutions into karst and shift the bacterial communities inside the cave in the future.

3.
Front Microbiol ; 6: 729, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257715

RESUMO

Unchanging physicochemical conditions and nutrient sources over long periods of time in cave and karst subsurface habitats, particularly aquifers, can support stable ecosystems, termed autochthonous microbial endokarst communities (AMEC). AMEC existence is unknown for other karst settings, such as epigenic cave streams. Conceptually, AMEC should not form in streams due to faster turnover rates and seasonal disturbances that have the capacity to transport large quantities of water and sediment and to change allochthonous nutrient and organic matter sources. Our goal was to investigate whether AMEC could form and persist in hydrologically active, epigenic cave streams. We analyzed bacterial diversity from cave water, sediments, and artificial substrates (Bio-Traps®) placed in the cave at upstream and downstream locations. Distinct communities existed for the water, sediments, and Bio-Trap® samplers. Throughout the study period, a subset of community members persisted in the water, regardless of hydrological disturbances. Stable habitat conditions based on flow regimes resulted in more than one contemporaneous, stable community throughout the epigenic cave stream. However, evidence for AMEC was insufficient for the cave water or sediments. Community succession, specifically as predictable exogenous heterotrophic microbial community succession, was evident from decreases in community richness from the Bio-Traps®, a peak in Bio-Trap® community biomass, and from changes in the composition of Bio-Trap® communities. The planktonic community was compositionally similar to Bio-Trap® initial colonizers, but the downstream Bio-Trap® community became more similar to the sediment community at the same location. These results can help in understanding the diversity of planktonic and attached microbial communities from karst, as well as microbial community dynamics, stability, and succession during disturbance or contamination responses over time.

4.
Front Microbiol ; 5: 473, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25250021

RESUMO

Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not necessarily geographic proximity to other springs. We examined the bacterial diversity of seven springs to test the hypothesis that occurrence of taxonomically similar microbes, important to the sulfur cycle, at each spring is controlled by geochemistry. Complementary Sanger sequencing and 454 pyrosequencing of 16S rRNA genes retrieved five proteobacterial classes, and Bacteroidetes, Chlorobi, Chloroflexi, and Firmicutes phyla from all springs, which suggested the potential for a core sulfidic spring microbiome. Among the putative sulfide-oxidizing groups (Epsilonproteobacteria and Gammaproteobacteria), up to 83% of the sequences from geochemically similar springs clustered together. Abundant populations of Hydrogenimonas-like or Sulfurovum-like spp. (Epsilonproteobacteria) occurred with abundant Thiothrix and Thiofaba spp. (Gammaproteobacteria), but Arcobacter-like and Sulfurimonas spp. (Epsilonproteobacteria) occurred with less abundant gammaproteobacterial populations. These distribution patterns confirmed that geochemistry rather than biogeography regulates bacterial dominance at each spring. Potential biogeographic controls were related to paleogeologic sedimentation patterns that could control long-term microbial transport mechanisms that link surface and subsurface environments. Knowing the composition of a core sulfidic spring microbial community could provide a way to monitor diversity changes if a system is threatened by anthropogenic processes or climate change.

5.
ISME J ; 7(2): 325-37, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23151637

RESUMO

Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface.


Assuntos
Biodiversidade , Água Subterrânea/química , Água Subterrânea/microbiologia , Proteobactérias/isolamento & purificação , Microbiologia da Água , Carbonato de Cálcio/química , Água Doce/química , Água Doce/microbiologia , Geologia , Magnésio/química , Minerais/química , Modelos Químicos , Proteobactérias/classificação , RNA Ribossômico 16S/análise , Texas
6.
FEMS Microbiol Ecol ; 79(2): 421-32, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22092920

RESUMO

Epsilonproteobacteria are widely distributed in marine, freshwater, and terrestrial environments, although most well-studied groups are from hydrothermal vents and the human intestinal tract. The environmental variables that control epsilonproteobacterial communities in sulfidic terrestrial environments, however, are poorly understood. Here, the environmental variables that influence epsilonproteobacterial community composition in geographically separated sulfidic caves and springs were determined by coarse and fine-scale approaches: denaturing gradient gel electrophoresis profiling of 23S rRNA PCR amplicons and clone library sequencing of the 16S-ITS-23S rRNA operon. Sequences retrieved from this study were not closely related to cultured representatives, indicating that existing culture collections do not adequately capture the diversity of terrestrial Epsilonproteobacteria. Comparisons of 16S-ITS-23S rRNA operon sequences from four sites revealed that some distant communities (> 8000 km) share closely related populations of Epsilonproteobacteria, while other sites have nearly clonal and phylogenetically distinct populations. Statistical evaluations of sequence data reveal that multiple environmental variables (e.g. temperature, pH, salinity, dissolved oxygen, and bicarbonate concentrations) influence Epsilonproteobacteria community composition. Locations with clonal populations tended to be from higher temperatures and intermediate dissolved oxygen concentrations. rRNA operon sequences outside of the 16S rRNA gene may be critical to recognizing environmental drivers of epsilonproteobacterial community composition.


Assuntos
Cavernas/microbiologia , Epsilonproteobacteria/fisiologia , Água Doce/microbiologia , Sequência de Bases , Cavernas/química , Epsilonproteobacteria/classificação , Epsilonproteobacteria/genética , Água Doce/química , Genes de RNAr , Humanos , Fontes Hidrotermais , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 23S , Enxofre/análise
7.
Environ Microbiol ; 9(6): 1523-34, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17504489

RESUMO

Lower Kane Cave, Wyoming (USA), has hydrogen sulfide-bearing springs that discharge into the cave passage. The springs and cave stream harbour white filamentous microbial mats dominated by Epsilonproteobacteria. Recently, novel 16S rRNA gene sequences from the phylum Acidobacteria, subgroup 7, were found in these cave mats. Although Acidobacteria are ubiquitously distributed in many terrestrial and marine habitats, little is known about their ecophysiology. To investigate this group in Lower Kane Cave in more detail, a full-cycle rRNA approach was applied based on 16S and 23S rRNA gene clone libraries and the application of novel probes for fluorescence in situ hybridization. The 16S and 23S rRNA gene clone libraries yielded seven and six novel acidobacterial operational taxonomic units (OTUs) respectively. The majority of the OTUs were affiliated with subgroups 7 and 8. One OTU was affiliated with subgroup 6, and one OTU could not be assigned to any of the present acidobacterial subgroups. Fluorescence in situ hybridization distinguished two morphologically distinct, rod-shaped cells of the acidobacterial subgroups 7 and 8. Although the ecophysiology of Acidobacteria from Lower Kane Cave will not be fully resolved until cultures are obtained, acidobacterial cells were always associated with the potentially chemolithoautotrophic epsilon- or gammaproteobacterial filaments, suggesting perhaps a lifestyle based on heterotrophy or chemoorganotrophy.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Carbono/metabolismo , Água Doce/microbiologia , Microbiologia da Água , Bactérias/classificação , Bactérias/genética , Ecossistema , Meio Ambiente , Água Doce/análise , Fenômenos Geológicos , Geologia , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , Wyoming
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA