Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Antimicrob Agents ; 63(5): 107118, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38417707

RESUMO

Allometric dose scaling aims to create isometric exposures between animals and humans and is often employed in preclinical pharmacokinetic/pharmacodynamic models. Bolus-administration with allometric scaling is the most simple and commonly used strategy in pre-clinical kidney injury studies; however, it is possible to humanize drug exposures. Currently, it is unknown if dose-matched, bolus-administration with allometric scaling results in similar outcomes compared to humanized infusions in the vancomycin induced kidney injury model. We utilized a preclinical Sprague-Dawley rat model to compare traditional allometrically-scaled, dose-matched, bolus-administration of vancomycin to an infusion-pump controlled, humanized infusion scheme to assess for differences in iohexol-measured kidney function and urinary kidney injury biomarkers. Following 24 h of vancomycin administration, rats in the humanized infusion group had equivalent area under the curve exposures to animals in the dose-matched bolus group (93.7 mg·h/L [IQR 90.2-97.2] vs. 99.5 mg·h/L [IQR 95.1-104.0], P = 0.07). No significant differences in iohexol-measured kidney function nor meaningful differences in urinary kidney injury biomarkers, kidney injury molecule-1, clusterin, and osteopontin, were detected. Administration of intravenous vancomycin as either a humanized infusion or dose-matched bolus resulted in similar vancomycin exposures. No differences in iohexol-measured GFR nor meaningful differences in urinary kidney injury biomarkers were observed among male Sprague-Dawley rats.


Assuntos
Injúria Renal Aguda , Antibacterianos , Rim , Ratos Sprague-Dawley , Vancomicina , Animais , Vancomicina/farmacocinética , Vancomicina/administração & dosagem , Vancomicina/efeitos adversos , Ratos , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Masculino , Rim/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Infusões Intravenosas , Modelos Animais de Doenças , Biomarcadores/urina , Testes de Função Renal , Iohexol/administração & dosagem , Iohexol/farmacocinética , Humanos
2.
Antimicrob Agents Chemother ; 67(2): e0127622, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36648224

RESUMO

Vancomycin-induced kidney injury is common, and outcomes in humans are well predicted by animal models. This study employed our translational rat model to investigate temporal changes in the glomerular filtration rate (GFR) and correlations with kidney injury biomarkers related to various vancomycin dosing strategies. First, Sprague-Dawley rats received allometrically scaled loading doses or standard doses. Rats that received a loading dose had low GFRs and increased urinary injury biomarkers (kidney injury molecule 1 [KIM-1] and clusterin) that persisted through day 2 compared to those that did not receive a loading dose. Second, we compared low and high allometrically scaled vancomycin doses to a positive acute kidney injury control of high-dose folic acid. Rats in both the low- and high-dose vancomycin groups had higher GFRs on all dosing days than the positive-control group. When the two vancomycin groups were compared, rats that received the low dose had significantly higher GFRs on days 1, 2, and 4. Compared to low-dose vancomycin, the KIM-1 was elevated among rats in the high-dose group on dosing day 3. The GFR correlated most closely with the urinary injury biomarker KIM-1 on all experimental days. Vancomycin loading doses were associated with significant losses of kidney function and elevations of urinary injury biomarkers. In our translational rat model, both the degree of kidney function decline and urinary biomarker increases corresponded to the magnitude of the vancomycin dose (i.e., a higher dose resulted in worse outcomes).


Assuntos
Injúria Renal Aguda , Vancomicina , Humanos , Ratos , Animais , Vancomicina/efeitos adversos , Ratos Sprague-Dawley , Rim , Injúria Renal Aguda/induzido quimicamente , Biomarcadores
3.
J Biol Chem ; 287(53): 44478-89, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23148217

RESUMO

Phosphorylation of tropomyosin (Tm) has been shown to vary in mouse models of cardiac hypertrophy. Little is known about the in vivo role of Tm phosphorylation. This study examines the consequences of Tm dephosphorylation in the murine heart. Transgenic (TG) mice were generated with cardiac specific expression of α-Tm with serine 283, the phosphorylation site of Tm, mutated to alanine. Echocardiographic analysis and cardiomyocyte cross-sectional area measurements show that α-Tm S283A TG mice exhibit a hypertrophic phenotype at basal levels. Interestingly, there are no alterations in cardiac function, myofilament calcium (Ca(2+)) sensitivity, cooperativity, or response to ß-adrenergic stimulus. Studies of Ca(2+) handling proteins show significant increases in sarcoplasmic reticulum ATPase (SERCA2a) protein expression and an increase in phospholamban phosphorylation at serine 16, similar to hearts under exercise training. Compared with controls, the decrease in phosphorylation of α-Tm results in greater functional defects in TG animals stressed by transaortic constriction to induce pressure overload-hypertrophy. This is the first study to investigate the in vivo role of Tm dephosphorylation under both normal and cardiac stress conditions, documenting a role for Tm dephosphorylation in the maintenance of a compensated or physiological phenotype. Collectively, these results suggest that modification of the Tm phosphorylation status in the heart, depending upon the cardiac state/condition, may modulate the development of cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Tropomiosina/metabolismo , Animais , Cálcio/metabolismo , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Feminino , Coração/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Fosforilação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tropomiosina/genética
4.
J Mol Cell Cardiol ; 47(3): 359-64, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19426736

RESUMO

Ischemia and heart failure are associated with protein kinase C (PKC) dependent phosphorylation of cardiac troponin I (cTnI). We investigated the effect of phosphorylation of cTnI PKC sites S43, S45 and T144 under normal (pH 7.0) and acidic (pH 6.5) conditions on tension in skinned fiber bundles from a mouse heart. To mimic the PKC phosphorylation, we exchanged troponin (cTn) in these fiber bundles with cTn complex containing either cTnI-(S43E/S45E) or cTnI-(T144E). We determined how pseudo-phosphorylation and acidic pH affect activation of thin filaments by strongly bound crossbridges by use of n-ethyl maleimide (NEM-S1) to mimic rigor. We hypothesized that PKC phosphorylation of cTnI amplifies the effect of ischemic/hypoxic conditions to depress myofilament force and Ca(2+)-responsiveness by reducing the ability of rigor crossbridge to activate force. Pseudo-phosphorylation of cTnI at S43/S45 exacerbated the effect of acidic pH to induce a rightward shift in the Ca(2+)-tension relation. Under acidic conditions, fibers regulated by cTnI-(S43E/S45E) demonstrated a significant reduction in the ability of NEM-S1 to recruit cycling crossbridges, when compared to controls regulated by cTnI. Similar effects of pseudo-phosphorylation of cTnI-(T144) occurred, but to a lesser extent that those of pseudo-phosphorylation of S43/S45. We conclude that under acidic conditions PKC phosphorylation of cTnI residues at S43/S45 and at T144 is likely to have differential, but significant effects in depressing the ability of both Ca(2+) and rigor crossbridges to activate force generation. Although these effects of PKC dependent phosphorylation may be maladaptive in heart failure, they may also spare ATP consumption and be cardio-protective in ischemia.


Assuntos
Citoesqueleto de Actina/metabolismo , Miócitos Cardíacos/metabolismo , Troponina I/química , Animais , Cálcio/metabolismo , Clonagem Molecular , Detergentes/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Modelos Biológicos , Fosforilação
5.
J Biol Chem ; 282(1): 183-93, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17099250

RESUMO

Force generating strong cross-bridges are required to fully activate cardiac thin filaments, but the molecular signaling mechanism remains unclear. Evidence demonstrating differential extents of cross-bridge-dependent activation of force, especially at acidic pH, in myofilaments in which slow skeletal troponin I (ssTnI) replaced cardiac TnI (cTnI) indicates the significance of a His in ssTnI that is an homologous Ala in cTnI. We compared cross-bridge-dependent activation in myofilaments regulated by cTnI, ssTnI, cTnI(A66H), or ssTnI(H34A). A drop from pH 7.0 to 6.5 induced enhanced cross-bridge-dependent activation in cTnI myofilaments, but depressed activation in cTnI(A66H) myofilaments. This same drop in pH depressed cross-bridge-dependent activation in both ssTnI myofilaments and ssTnI(H34A) myofilaments. Compared with controls, cTnI(A66H) myofilaments were desensitized to Ca(2+), whereas there was no difference in the Ca(2+)-force relationship between ssTnI and ssTnI(H34A) myofilaments. The mutations in cTnI and ssTnI did not affect Ca(2+) dissociation rates from cTnC at pH 7.0 or 6.5. However, at pH 6.5, cTnI(A66H) had lower affinity for cTnT than cTnI. We also probed cross-bridge-dependent activation in myofilaments regulated by cTnI(Q56A). Myofilaments containing cTnI(Q56A) demonstrated cross-bridge-dependent activation that was similar to controls containing cTnI at pH 7.0 and an enhanced cross-bridge-dependent activation at pH 6.5. We conclude that a localized N-terminal region of TnI comprised of amino acids 33-80, which interacts with C-terminal regions of cTnC and cTnT, is of particular significance in transducing signaling of thin filament activation by strong cross-bridges.


Assuntos
Miócitos Cardíacos/química , Troponina I/química , Animais , Cálcio/química , Cálcio/metabolismo , Clonagem Molecular , Reagentes de Ligações Cruzadas/farmacologia , Glutationa Transferase/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Mutação , Miocárdio/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA