Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 7(1): 716-732, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036738

RESUMO

The heterochromatin protein 1 (HP1) sub-family of CBX chromodomains are responsible for the recognition of histone H3 lysine 9 tri-methyl (H3K9me3)-marked nucleosomal substrates through binding of the N-terminal chromodomain. These HP1 proteins, namely, CBX1 (HP1ß), CBX3 (HP1γ), and CBX5 (HP1α), are commonly associated with regions of pericentric heterochromatin, but recent literature studies suggest that regulation by these proteins is likely more dynamic and includes other loci. Importantly, there are no chemical tools toward HP1 chromodomains to spatiotemporally explore the effects of HP1-mediated processes, underscoring the need for novel HP1 chemical probes. Here, we report the discovery of HP1 targeting peptidomimetic compounds, UNC7047 and UNC7560, and a biotinylated derivative tool compound, UNC7565. These compounds represent an important milestone, as they possess nanomolar affinity for the CBX5 chromodomain by isothermal titration calorimetry (ITC) and bind HP1-containing complexes in cell lysates. These chemical tools provide a starting point for further optimization and the study of CBX5-mediated processes.

2.
J Med Chem ; 64(12): 8510-8522, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33999620

RESUMO

Plant homeodomain finger protein 1 (PHF1) is an accessory component of the gene silencing complex polycomb repressive complex 2 and recognizes the active chromatin mark, trimethylated lysine 36 of histone H3 (H3K36me3). In addition to its role in transcriptional regulation, PHF1 has been implicated as a driver of endometrial stromal sarcoma and fibromyxoid tumors. We report the discovery and characterization of UNC6641, a peptidomimetic antagonist of the PHF1 Tudor domain which was optimized through in silico modeling and incorporation of non-natural amino acids. UNC6641 binds the PHF1 Tudor domain with a Kd value of 0.96 ± 0.03 µM while also binding the related protein PHF19 with similar potency. A crystal structure of PHF1 in complex with UNC6641, along with NMR and site-directed mutagenesis data, provided insight into the binding mechanism and requirements for binding. Additionally, UNC6641 enabled the development of a high-throughput assay to identify small molecule binders of PHF1.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Peptidomiméticos/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Humanos , Ligantes , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Proteínas do Grupo Polycomb/antagonistas & inibidores , Proteínas do Grupo Polycomb/genética , Ligação Proteica , Domínio Tudor
3.
Curr Opin Chem Biol ; 63: 132-144, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33852996

RESUMO

Responsible for interpreting histone post-translational modifications, epigenetic reader proteins have emerged as novel therapeutic targets for a wide range of diseases. Chemical probes have been critical in enabling target validation studies and have led to translational advances in cancer and inflammation-related pathologies. Here, we present the most recently reported probes of reader proteins that recognize acylated and methylated lysine. We will discuss challenges associated with achieving potent antagonism of reader domains and review ongoing efforts to overcome these hurdles, focusing on targeting strategies including the use of peptidomimetic ligands, allosteric modulators, and protein degraders.


Assuntos
Lisina/química , Peptidomiméticos/química , Acetilação , Regulação Alostérica , Sítio Alostérico , Epigênese Genética , Histonas/química , Humanos , Ligantes , Metilação , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade
4.
Sci Rep ; 9(1): 6524, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024026

RESUMO

Many common disease-causing mutations result in loss-of-function (LOF) of the proteins in which they occur. LOF mutations have proven recalcitrant to pharmacologic intervention, presenting a challenge for the development of targeted therapeutics. Polycomb repressive complex 2 (PRC2), which contains core subunits (EZH2, EED, and SUZ12), regulates gene activity by trimethylation of histone 3 lysine 27. The dysregulation of PRC2 catalytic activity by mutations has been implicated in cancer and other diseases. Among the mutations that cause PRC2 malfunction, an I363M LOF mutation of EED has been identified in myeloid disorders, where it prevents allosteric activation of EZH2 catalysis. We describe structure-based design and computational simulations of ligands created to ameliorate this LOF. Notably, these compounds selectively stimulate the catalytic activity of PRC2-EED-I363M over wildtype-PRC2. Overall, this work demonstrates the feasibility of developing targeted therapeutics for PRC2-EED-I363M that act as allosteric agonists, potentially correcting this LOF mutant phenotype.


Assuntos
Descoberta de Drogas , Mutação/genética , Complexo Repressor Polycomb 2/genética , Regulação Alostérica , Linhagem Celular , Desenho de Fármacos , Humanos , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Peptidomiméticos/síntese química , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA