Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(12): 4854-4860, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35639869

RESUMO

New nanostructures often reflect new and exciting properties. Here, we present an two-dimensional, hitherto unreported PdO square network with lateral dimensions up to hundreds of nanometers growing on reduced graphene oxide (rGO), forming a hybrid nanofilm. An intermediate state of dissolved Pd(0) in the bacterium S. oneidensis MR-1 is pivotal in the biosynthesis and inspires an abiotic synthesis. The PdO network shows a lattice spacing of 0.5 nm and a thickness of 1.8 nm on both sides of an rGO layer and is proposed to be cubic or tetragonal crystal, as confirmed by structural simulations. A 2D silver oxide analog with a similar structure is also obtained using an analogous abiotic synthesis. Our study thus opens a simple route to a whole new class of 2D metal oxides on rGO as promising candidates for graphene superlattices with unexplored properties and potential applications for example in electronics, sensing, and energy conversion.


Assuntos
Grafite , Nanoestruturas , Grafite/química , Nanoestruturas/química , Paládio/química
2.
Front Immunol ; 12: 744509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691048

RESUMO

Type 1 diabetes is an immune-driven disease, where the insulin-producing beta cells from the pancreatic islets of Langerhans becomes target of immune-mediated destruction. Several studies have highlighted the implication of circulating and exosomal microRNAs (miRNAs) in type 1 diabetes, underlining its biomarker value and novel therapeutic potential. Recently, we discovered that exosome-enriched extracellular vesicles carry altered levels of both known and novel miRNAs in breast milk from lactating mothers with type 1 diabetes. In this study, we aimed to characterize exosomal miRNAs in the circulation of lactating mothers with and without type 1 diabetes, hypothesizing that differences in type 1 diabetes risk in offspring from these groups are reflected in the circulating miRNA profile. We performed small RNA sequencing on exosome-enriched extracellular vesicles extracted from plasma of 52 lactating mothers around 5 weeks postpartum (26 with type 1 diabetes and 26 age-matched controls), and found a total of 2,289 miRNAs in vesicles from type 1 diabetes and control libraries. Of these, 176 were differentially expressed in plasma from mothers with type 1 diabetes (167 upregulated; 9 downregulated, using a cut-off of abs(log2FC) >1 and FDR adjusted p-value <0.05). Extracellular vesicles were verified by nanoparticle tracking analysis, transmission electron microscopy and immunoblotting. Five candidate miRNAs were selected based on their involvement in diabetes and immune modulation/beta-cell functions: hsa-miR-127-3p, hsa-miR-146a-5p, hsa-miR-26a-5p, hsa-miR-24-3p and hsa-miR-30d-5p. Real-time qPCR validation confirmed that hsa-miR-146a-5p, hsa-miR-26a-5p, hsa-miR-24-3p, and hsa-miR-30d-5p were significantly upregulated in lactating mothers with type 1 diabetes as compared to lactating healthy mothers. To determine possible target genes and affected pathways of the 5 miRNA candidates, computational network-based analyses were carried out with TargetScan, mirTarBase, QIAGEN Ingenuity Pathway Analysis and PantherDB database. The candidates showed significant association with inflammatory response and cytokine and chemokine mediated signaling pathways. With this study, we detect aberrant levels of miRNAs within plasma extracellular vesicles from lactating mothers with type 1 diabetes during the postpartum period, including miRNAs with associations to disease pathogenesis and inflammatory responses.


Assuntos
Aleitamento Materno , MicroRNA Circulante/sangue , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/genética , Exossomos/genética , Adulto , Biomarcadores/sangue , Exossomos/metabolismo , Feminino , Humanos , Mães , Período Pós-Parto/sangue , Período Pós-Parto/genética , Gravidez
3.
Small ; 17(47): e2103461, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34672082

RESUMO

Photothermal therapy requires efficient plasmonic nanomaterials with small size, good water dispersibility, and biocompatibility. This work reports a one-pot, 2-min synthesis strategy for ultrathin CuS nanocrystals (NCs) with precisely tunable size and localized surface plasmon resonance (LSPR), where a single-starch-layer coating leads to a high LSPR absorption at the near-IR wavelength 980 nm. The CuS NC diameter increases from 4.7 (1 nm height along [101]) to 28.6 nm (4.9 nm height along [001]) accompanied by LSPR redshift from 978 to 1200 nm, as the precursor ratio decreases from 1 to 0.125. Photothermal temperature increases by 38.6 °C in 50 mg L-1 CuS NC solution under laser illumination (980 nm, 1.44 W cm-2 ). Notably, 98.4% of human prostate cancer PC-3/Luc+ cells are killed by as little as 5 mg L-1 starch-coated CuS NCs with 3-min laser treatment, whereas CuS NCs without starch cause insignificant cell death. LSPR modeling discloses that the starch layer enhances the photothermal effect by significantly increasing the free carrier density and blue-shifting the LSPR toward 980 nm. This study not only presents a new type of photothermally highly efficient ultrathin CuS NCs, but also offers in-depth LSPR modeling investigations useful for other photothermal nanomaterial designs.


Assuntos
Nanopartículas , Terapia Fototérmica , Cobre , Humanos , Masculino , Amido
4.
ACS Appl Mater Interfaces ; 13(20): 23702-23713, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33974401

RESUMO

Designing efficient and robust nonprecious metal-based electrocatalysts for overall water electrolysis, which is mainly limited by the oxygen evolution reaction (OER), for hydrogen production remains a major challenge for the hydrogen economy. In this work, a bimetallic NiFeP catalyst is coated on nickel phosphide rods grown on nickel foam (NiFeP@NiP@NF). This self-supported and interfacially connected electrode structure is favorable for mass transfer and reducing electrical resistance during electrocatalysis. The preparation of NiFeP@NiP@NF is optimized in terms of (i) the coprecipitation time of the NiFe Prussian blue analogue layer that serves as phosphides precursor and (ii) the phosphidation temperature. The optimized sample exhibits excellent OER performance delivering current densities of 10 and 100 mA cm-2 at low overpotentials of 227 and 252 mV in 1.0 M KOH, respectively, and maintaining 10 mA cm-2 for more than 120 h without obvious degradation. Moreover, it can also be operated as a hydrogen evolution electrocatalyst, requiring an overpotential of 105 mV at 10 mA cm-2 in the same medium. Thus, the as-prepared material was tentatively utilized as a bifunctional electrocatalyst in a symmetric electrolyzer, requiring a voltage bias of 1.57 V to afford 10 mA cm-2 in 1.0 M KOH, while exhibiting outstanding stability.

5.
Biosens Bioelectron ; 167: 112500, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829175

RESUMO

Aggregation of reduced graphene oxide (RGO) due to π-π stacking is a recurrent problem in graphene-based electrochemistry, decreasing the effective working area and therefore the performance of the RGO electrodes. Dispersing RGO on three-dimensional (3D) carbon paper electrodes is one strategy towards overcoming this challenge, with partial relief aggregation. In this report, we describe the grafting of negatively charged 4-aminobenzoic acid (4-ABA) onto a graphene functionalized carbon paper electrode surface. 4-ABA functionalization induces separation of the RGO layers, at the same time leading to favorable orientation of the blue multi-copper enzyme Myrothecium verrucaria bilirubin oxidase (MvBOD) for direct electron transfer (DET) in the dioxygen reduction reaction (ORR) at neutral pH. Simultaneous electroreduction of graphene oxide to RGO and covalent attachment of 4-ABA are achieved by applying alternating cathodic and anodic electrochemical potential pulses, leading to a high catalytic current density (Δjcat:193 ± 4 µA cm-2) under static conditions. Electrochemically grafted 4-ABA not only leads to a favorable orientation of BOD as validated by fitting a kinetic model to the electrocatalytic data, but also acts to alleviate RGO aggregation as disclosed by scanning electron microscopy, most likely due to the electrostatic repulsion between 4-ABA-grafted graphene layers. With a half-lifetime of 55 h, the bioelectrode also shows the highest operational stability for DET-type MvBOD-based bioelectrodes reported to date. The bioelectrode was finally shown to work well as a biocathode of a membrane-less glucose/O2 enzymatic biofuel cell with a maximum power density of 22 µW cm-2 and an open circuit voltage of 0.51 V.


Assuntos
Técnicas Biossensoriais , Grafite , Eletrodos , Enzimas Imobilizadas , Hypocreales , Oxirredutases atuantes sobre Doadores de Grupo CH-CH
6.
Bioelectrochemistry ; 134: 107537, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32361268

RESUMO

Enzymatic biofuel cells (EBFCs) have attracted increasing attention due to their potential to harvest energy from a wide range of fuels under mild conditions. Fabrication of effective bioelectrodes is essential for the practical application of EBFCs. Graphene possesses unique physiochemical properties making it an attractive material for the construction of EBFCs. Despite these promising properties, graphene has not been used for EBFCs as frequently as carbon nanotubes, another nanoscale carbon allotrope. This review focuses on current research progress in graphene-based electrodes, including electrodes modified with graphene derivatives and graphene composites, as well as free-standing graphene electrodes. Particular features of graphene-based electrodes such as high conductivity, mechanical flexibility and high porosity for bioelectrochemical applications are highlighted. Reports on graphene-based EBFCs from the last five years are summarized, and perspectives for graphene-based EBFCs are offered.


Assuntos
Fontes de Energia Bioelétrica , Enzimas/metabolismo , Grafite/química , Eletroquímica , Eletrodos
7.
ACS Nano ; 14(4): 5061-5074, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32167744

RESUMO

The structure and ultrafast photodynamics of ∼8 nm Au@Pt core-shell nanocrystals with ultrathin (<3 atomic layers) Pt-Au alloy shells are investigated to show that they meet the design principles for efficient bimetallic plasmonic photocatalysis. Photoelectron spectra recorded at two different photon energies are used to determine the radial concentration profile of the Pt-Au shell and the electron density near the Fermi energy, which play a key role in plasmon damping and electronic and thermal conductivity. Transient absorption measurements track the flow of energy from the plasmonic core to the electronic manifold of the Pt shell and back to the lattice of the core in the form of heat. We show that strong coupling to the high density of Pt(d) electrons at the Fermi level leads to accelerated dephasing of the Au plasmon on the femtosecond time scale, electron-electron energy transfer from Au(sp) core electrons to Pt(d) shell electrons on the sub-picosecond time scale, and enhanced thermal resistance on the 50 ps time scale. Electron-electron scattering efficiently funnels hot carriers into the ultrathin catalytically active shell at the nanocrystal surface, making them available to drive chemical reactions before losing energy to the lattice via electron-phonon scattering on the 2 ps time scale. The combination of strong broadband light absorption, enhanced electromagnetic fields at the catalytic metal sites, and efficient delivery of hot carriers to the catalyst surface makes core-shell nanocrystals with plasmonic metal cores and ultrathin catalytic metal shells promising nanostructures for the realization of high-efficiency plasmonic catalysts.

8.
Nanoscale ; 11(37): 17235-17251, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31418761

RESUMO

Cysteine (Cys) is an essential amino acid with a carboxylic acid, an amine and a thiol group. We have studied the surface structure and adsorption dynamics of l-cysteine adlayers on Au(100) from aqueous solution using electrochemistry, high-resolution electrochemical scanning tunnelling microscopy (in situ STM), and molecular modelling. Cys adsorption on this low-index Au-surface has been much less studied than Cys adsorption on Au(111)- and Au(110)-electrode surfaces. Chronopotentiometry was employed to monitor the adsorption dynamics at sub-second resolution and showed that adsorption is completed in 30 minutes at Cys concentrations above 100 µM. Two consecutive steps could be fitted to these data. Two separate reductive desorption peaks of Cys adlayers on Au(100) with a total coverage of 2.52 (±0.15) × 10-10 mol cm-2 were observed. In situ STM showed that the adsorbed Cys is organized in stripes with "fork-like" features which co-exist in (11 × 2)-2Cys and (7 × 2)-2Cys lattices, quite differently from Cys adsorption on Au(111)-electrode surfaces. Stripe structures with bright STM contrast in the center suggest that a second Cys adlayer on top of a first adlayer is formed, supporting the dual-peak reductive desorption of Cys adlayers. In addition, monolayers of both pure l-Cys and pure d-Cys and a 1 : 1 racemic mixture of l- and d-Cys on Au(100) were studied. Virtually identical macroscopic electrochemical features were found, but in situ STM discloses many more defects for the racemic mixture than for the pure enantiomers due to structural mismatch of l- and d-Cys. Density functional theory (DFT) calculations combined with a cluster model for the Au(100) surface were carried out to investigate the adsorption energy and geometry of the adsorbed monomer and dimer Cys species in different orientations, with detailed attention to the chirality effects. Optimized DFT geometries were used to construct model STM images, and kinetic Monte Carlo simulations undertaken to illuminate the growth of adsorbate rows and the mechanism of the adlayer formation as well as the Cys adsorption patterns specific to the Au(100)-electrode surface.


Assuntos
Cisteína/química , Técnicas Eletroquímicas , Ouro/química , Modelos Químicos , Modelos Moleculares
9.
Environ Sci Technol ; 50(19): 10635-10643, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27577171

RESUMO

The ecotoxicity of platinum nanoparticles (PtNPs) widely used in for example automotive catalytic converters, is largely unknown. This study employs various characterization techniques and toxicity end points to investigate PtNP toxicity toward the green microalgae Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. Growth rate inhibition occurred in standard ISO tests (EC50 values of 15-200 mg Pt/L), but also in a double-vial setup, separating cells from PtNPs, thus demonstrating shading as an important artifact for PtNP toxicity. Negligible membrane damage, but substantial oxidative stress was detected at 0.1-80 mg Pt/L in both algal species using flow cytometry. PtNPs caused growth rate inhibition and oxidative stress in P. subcapitata, beyond what was accounted for by dissolved Pt, indicating NP-specific toxicity of PtNPs. Overall, P. subcapitata was found to be more sensitive toward PtNPs and higher body burdens were measured in this species, possibly due to a favored binding of Pt to the polysaccharide-rich cell wall of this algal species. This study highlights the importance of using multimethod approaches in nanoecotoxicological studies to elucidate toxicity mechanisms, influence of NP-interactions with media/organisms, and ultimately to identify artifacts and appropriate end points for NP-ecotoxicity testing.


Assuntos
Nanopartículas/química , Platina , Chlamydomonas reinhardtii , Clorófitas , Microalgas
10.
Adv Mater ; 28(21): 4097-104, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27031448

RESUMO

A photoresponsive inorganic microfiber with a plasmonic core-shell structure responds to visible light to achieve self-protection against oxidation in an open environment. The microfibers are synthesized via a newly developed reagent-free electrolytic method and have unique interfacial structures and high surface activity.

11.
Angew Chem Int Ed Engl ; 55(7): 2378-81, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26762534

RESUMO

Controlled self-assembly (SA) of proteins offers the possibility to tune their properties or to create new materials. Herein, we present the synthesis of a modified human insulin (HI) with two distinct metal-ion binding sites, one native, the other abiotic, enabling hierarchical SA through coordination with two different metal ions. Selective attachment of an abiotic 2,2'-bipyridine (bipy) ligand to HI, yielding HI-bipy, enabled Zn(II)-binding hexamers to SA into trimers of hexamers, [[HI-bipy]6]3, driven by octahedral coordination to a Fe(II)  ion. The structures were studied in solution by small-angle X-ray scattering and on surfaces with AFM. The abiotic metal ligand had a higher affinity for Fe(II) than Zn(II)  ions, enabling control of the hexamer formation with Zn(II) and the formation of trimers of hexamers with Fe(II)  ions. This precise control of protein SA to give oligomers of oligomers provides nanoscale structures with potential applications in nanomedicine.


Assuntos
Compostos Ferrosos/química , Insulina/química , Nanoestruturas , Zinco/química , Sequência de Aminoácidos , Microscopia de Força Atômica , Modelos Moleculares , Dados de Sequência Molecular
12.
Dalton Trans ; 43(46): 17230-5, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25333728

RESUMO

Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromatic and aliphatic aldehydes achieving excellent results in terms of both conversion and selectivity.


Assuntos
Aldeídos/metabolismo , Complexos de Coordenação/química , Fosfinas/química , Ródio/química , Aldeídos/química , Catálise , Gases/química , Microscopia Eletrônica de Transmissão
13.
Nanoscale ; 6(18): 10516-23, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25089855

RESUMO

We report a new method for controlling H- and J-stacking in supramolecular self-assembly. Graphene nanosheets act as structure inducers to direct the self-assembly of a versatile organic dye, perylene into two distinct types of functional nanostructures, i.e. one-dimensional nanotubes via J-stacking and two-dimensional branched nanobuds through H-stacking. Graphene integrated supramolecular nanocomposites are highly stable and show significant enhancement of photocurrent generation in these two configurations of photosensing devices, i.e. solid-state optoelectronic constructs and liquid-junction solar cells.

14.
Nanotoxicology ; 7(6): 1082-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22769854

RESUMO

Aquatic toxicology of engineered nanoparticles is challenged by methodological difficulties stemming partly from highly dynamic and poorly understood behavior of nanoparticles in biological test systems. In this paper scientific and technical challenges of testing not readily soluble nanoparticles in standardised algal growth inhibition tests are highlighted with specific focus on biomass quantification methods. This is illustrated through tests with TiO2 and Au nanoparticles, for which cell-nanoparticle interactions and behavior was studied during incubation. Au NP coating layers changed over time and TiO2 nanoparticle aggregation/agglomeration increased as a function of concentration. Three biomass surrogate measuring techniques were evaluated (coulter counting, cell counting in haemocytometer, and fluorescence of pigment extracts) and out of these the fluorometric methods was found to be most suitable. Background correction was identified as a key issue for biomass quantification, complicated by algae-particle interactions and nanoparticle transformation. Optimisation of the method is needed to reduce further particle interference on measurements.


Assuntos
Clorófitas/efeitos dos fármacos , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Bioensaio/métodos , Relação Dose-Resposta a Droga , Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Titânio/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
16.
Chemphyschem ; 11(13): 2844-53, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20715275

RESUMO

Monodisperse platinum nanoparticles (PtNPs) were synthesized by a green recipe. Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. Among the ten buffers studied, 2-(N-morpholino)ethanesulfonic acid (MES), ammonium acetate and phosphate are the best media for PtNP size control and fast chemical preparation. The uniform sizes of the metal cores were determined by transmission electron microscopy (TEM) and found to be 1.8 ± 0.5, 1.7 ± 0.2 and 1.6 ± 0.5 nm in phosphate, MES and ammonium acetate buffer, respectively. The estimated total diameter of the core with a starch coating layer is 5.8-6.0 nm, based on thermogravimetric analysis (TGA). The synthesis reaction is simple, environmentally friendly, highly reproducible, and easy to scale up. The PtNPs were characterized electrochemically and show high catalytic activity for reduction of dioxygen and hydrogen peroxide as well as for oxidation of dihydrogen. The PtNPs can be transferred to carbon support materials with little demand for high specific surface area of carbon. This enables utilization of graphitized carbon blacks to prepare well-dispersed Pt/C catalysts, which exhibit significantly improved durability in the accelerated aging test under fuel cell mimicking conditions.


Assuntos
Glucose/química , Nanopartículas Metálicas/química , Platina/química , Amido/química , Ácidos Alcanossulfônicos/química , Catálise , Eletroquímica , Morfolinas/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA