Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38664549

RESUMO

Individuals with cocaine addiction can experience many craving episodes and subsequent relapses, which represents the main obstacle to recovery. Craving is often favored when abstinent individuals ingest a small dose of cocaine, encounter cues associated with drug use or are exposed to stressors. Using a cocaine-primed reinstatement model in rat, we recently showed that cocaine-conditioned interoceptive cues can be extinguished with repeated cocaine priming in the absence of drug reinforcement, a phenomenon we called extinction of cocaine priming. Here, we applied a large-scale c-Fos brain mapping approach following extinction of cocaine priming in male rats to identify brain regions implicated in processing the conditioned interoceptive stimuli of cocaine priming. We found that cocaine-primed reinstatement is associated with increased c-Fos expression in key brain regions (e.g., dorsal and ventral striatum, several prefrontal areas and insular cortex), while its extinction mostly disengages them. Moreover, while reinstatement behavior was correlated with insular and accumbal activation, extinction of cocaine priming implicated parts of the ventral pallidum, the mediodorsal thalamus and the median raphe. These brain patterns of activation and inhibition suggest that after repeated priming, interoceptive signals lose their conditioned discriminative properties and that action-outcome associations systems are mobilized in search for new contingencies, a brain state that may predispose to rapid relapse.

2.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485256

RESUMO

The ventral pallidum (VP) is a central hub in the reward circuitry with diverse projections that have different behavioral roles attributed mostly to the connectivity with the downstream target. However, different VP projections may represent, as in the striatum, separate neuronal populations that differ in more than just connectivity. In this study, we performed in mice of both sexes a multimodal dissection of four major projections of the VP-to the lateral hypothalamus (VP→LH), ventral tegmental area (VP→VTA), lateral habenula (VP→LHb), and mediodorsal thalamus (VP→MDT)-with physiological, anatomical, genetic, and behavioral tools. We also tested for physiological differences between VP neurons receiving input from nucleus accumbens medium spiny neurons (MSNs) that express either the D1 (D1-MSNs) or the D2 (D2-MSNs) dopamine receptor. We show that each VP projection (1) when inhibited during a cocaine conditioned place preference (CPP) test affects performance differently, (2) receives a different pattern of inputs using rabies retrograde labeling, (3) shows differentially expressed genes using RNA sequencing, and (4) has projection-specific characteristics in excitability and synaptic input characteristics using whole-cell patch clamp. VP→LH and VP→VTA projections have different effects on CPP and show low overlap in circuit tracing experiments, as VP→VTA neurons receive more striatal input, while VP→LH neurons receive more olfactory input. Additionally, VP→VTA neurons are less excitable, while VP→LH neurons are more excitable than the average VP neuron, a difference driven mainly by D2-MSN-responding neurons. Thus, VP→VTA and VP→LH neurons may represent largely distinct populations of VP neurons.


Assuntos
Prosencéfalo Basal , Cocaína , Vias Neurais , Recompensa , Animais , Camundongos , Prosencéfalo Basal/fisiologia , Masculino , Cocaína/farmacologia , Cocaína/administração & dosagem , Feminino , Vias Neurais/fisiologia , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/citologia
3.
Biol Psychiatry ; 93(6): 489-501, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435669

RESUMO

BACKGROUND: Opioid discontinuation generates a withdrawal syndrome marked by increased negative affect. Increased symptoms of anxiety and dysphoria during opioid discontinuation are significant barriers to achieving long-term abstinence in opioid-dependent individuals. While adaptations in the nucleus accumbens are implicated in opioid abstinence syndrome, the precise neural mechanisms are poorly understood. Additionally, our current knowledge is limited to changes following natural and semisynthetic opioids, despite recent increases in synthetic opioid use and overdose. METHODS: We used a combination of cell subtype-specific viral labeling and electrophysiology in male and female mice to investigate structural and functional plasticity in nucleus accumbens medium spiny neuron (MSN) subtypes after fentanyl abstinence. We characterized molecular adaptations after fentanyl abstinence with subtype-specific RNA sequencing and weighted gene co-expression network analysis. We used viral-mediated gene transfer to manipulate the molecular signature of fentanyl abstinence in D1-MSNs. RESULTS: Here, we show that fentanyl abstinence increases anxiety-like behavior, decreases social interaction, and engenders MSN subtype-specific plasticity in both sexes. D1-MSNs, but not D2-MSNs, exhibit dendritic atrophy and an increase in excitatory drive. We identified a cluster of coexpressed dendritic morphology genes downregulated selectively in D1-MSNs that are transcriptionally coregulated by E2F1. E2f1 expression in D1-MSNs protects against loss of dendritic complexity, altered physiology, and negative affect-like behaviors caused by fentanyl abstinence. CONCLUSIONS: Our findings indicate that fentanyl abstinence causes unique structural, functional, and molecular changes in nucleus accumbens D1-MSNs that can be targeted to alleviate negative affective symptoms during abstinence.


Assuntos
Analgésicos Opioides , Fentanila , Camundongos , Masculino , Feminino , Animais , Fentanila/metabolismo , Núcleo Accumbens/fisiologia , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/metabolismo , Camundongos Transgênicos
4.
Mol Psychiatry ; 27(10): 3980-3991, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35764708

RESUMO

Psychostimulant exposure alters the activity of ventral pallidum (VP) projection neurons. However, the molecular underpinnings of these circuit dysfunctions are unclear. We used RNA-sequencing to reveal alterations in the transcriptional landscape of the VP that are induced by cocaine self-administration in mice. We then probed gene expression in select VP neuronal subpopulations to isolate a circuit associated with cocaine intake. Finally, we used both overexpression and CRISPR-mediated knockdown to test the role of a gene target on cocaine-mediated behaviors as well as dendritic spine density. Our results showed that a large proportion (55%) of genes associated with structural plasticity were changed 24 h following cocaine intake. Among them, the transcription factor Nr4a1 (Nuclear receptor subfamily 4, group A, member 1, or Nur77) showed high expression levels. We found that the VP to mediodorsal thalamus (VP → MDT) projection neurons specifically were recapitulating this increase in Nr4a1 expression. Overexpressing Nr4a1 in VP → MDT neurons enhanced drug-seeking and drug-induced reinstatement, while Nr4a1 knockdown prevented self-administration acquisition and subsequent cocaine-mediated behaviors. Moreover, we showed that Nr4a1 negatively regulated spine dynamics in this specific cell subpopulation. Together, our study identifies for the first time the transcriptional mechanisms occurring in VP in drug exposure. Our study provides further understanding on the role of Nr4a1 in cocaine-related behaviors and identifies the crucial role of the VP → MDT circuit in drug intake and relapse-like behaviors.


Assuntos
Prosencéfalo Basal , Cocaína , Animais , Camundongos , Cocaína/metabolismo , Prosencéfalo Basal/metabolismo , Recompensa , Neurônios/metabolismo , Tálamo , Perfilação da Expressão Gênica
5.
Psychopharmacology (Berl) ; 238(1): 41-54, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32914243

RESUMO

RATIONALE: Stress exposure has a lasting impact on motivated behavior and can exacerbate existing vulnerabilities for developing a substance use disorder. Several models have been developed to examine how stressful experiences shape drug reward. These range from locomotor sensitization and conditioned place preference to the propensity for drug self-administration or responding to drug-predictive cues. While self-administration studies are considered to have more translational relevance, most of the studies to date have been conducted in rats. Further, many self-administration studies are conducted in single-housed animals, adding the additional stressor of social isolation. OBJECTIVES: We sought to establish how chronic social defeat stress (CSDS) and social housing conditions impact cocaine self-administration and cocaine-seeking behaviors in C57BL/6 mice. METHODS: We assessed self-administration behavior (cocaine or saline, 0.5 mg/kg/infusion) in C57BL/6 mice subjected to 10-day CSDS or in unstressed controls. Mice were housed either in pairs or in isolation during self-administration. We compared the effect of housing on acquisition of self-administration, seeking, extinction, drug-induced reinstatement, and after re-exposure to the social stressor. RESULTS: Pair-housing during self-administration revealed increased social avoidance after CSDS is associated with decreased cocaine intake. In contrast, single-housing revealed stress-sensitive cocaine intake, with increased social avoidance after CSDS associated with increased early cocaine intake. Pair-, but not single-housed mice are susceptible to drug-induced reinstatement independent of CSDS history. Stress re-exposure sensitized cocaine-seeking in stressed single-housed mice. CONCLUSIONS: The social context surrounding cocaine intake can bidirectionally influence cocaine-related behaviors after psychosocial stress and should be considered when studying stress and drug cross-sensitization.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/psicologia , Cocaína/administração & dosagem , Abrigo para Animais/normas , Motivação/efeitos dos fármacos , Derrota Social , Estresse Psicológico/psicologia , Animais , Condicionamento Clássico/efeitos dos fármacos , Sinais (Psicologia) , Extinção Psicológica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Recompensa , Autoadministração , Comportamento Social , Isolamento Social
6.
Mol Psychiatry ; 26(6): 1846-1859, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32366954

RESUMO

Motor stereotypies occurring in early-onset neuropsychiatric diseases are associated with dysregulated basal ganglia direct-pathway activity. Disruptions in network connectivity through impaired neuronal structure have been implicated in both rodents and humans. However, the neurobiological mechanisms leading to direct-pathway neuron disconnectivity in stereotypy remain poorly understood. We have a mouse line with Tropomyosin receptor kinase B (TrkB) receptor deletion from D1-expressing cells (D1-Cre-flTrkB) in which a subset of animals shows repetitive rotations and head tics with juvenile onset. Here we demonstrate these behaviors may be associated with abnormal direct-pathway activity by reducing rotations using chemogenetic inhibition of dorsal striatum D1-medium spiny neurons (D1-MSNs) in both juvenile and young-adult mice. Taking advantage of phenotypical differences in animals with similar genotypes, we then interrogated the D1-MSN specific translatome associated with repetitive behavior by using RNA sequencing of ribosome-associated mRNA. Detailed translatome analysis followed by multiplexed gene expression assessment revealed profound alterations in neuronal projection and synaptic structure related genes in stereotypy mice. Examination of neuronal morphology demonstrated dendritic atrophy and dendritic spine loss in dorsal striatum D1-MSNs from mice with repetitive behavior. Together, our results uncover phenotype-specific molecular alterations in D1-MSNs that relate to morphological adaptations in mice displaying stereotypy behavior.


Assuntos
Receptores de Dopamina D1 , Receptores de Dopamina D2 , Animais , Corpo Estriado/metabolismo , Individualidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
7.
Mol Psychiatry ; 25(5): 1022-1034, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30120419

RESUMO

Depression alters the structure and function of brain reward circuitry. Preclinical evidence suggests that medium spiny neurons (MSNs) in the nucleus accumbens (NAc) undergo structural plasticity; however, the molecular mechanism and behavioral significance is poorly understood. Here we report that atrophy of D1, but not D2 receptor containing MSNs is strongly associated with social avoidance in mice subject to social defeat stress. D1-MSN atrophy is caused by cell-type specific upregulation of the GTPase RhoA and its effector Rho-kinase. Pharmacologic and genetic reduction of activated RhoA prevents depressive outcomes to stress by preventing loss of D1-MSN dendritic arbor. Pharmacologic and genetic promotion of activated RhoA enhances depressive outcomes by reducing D1-MSN dendritic arbor and is sufficient to promote depressive-like behaviors in the absence of stress. Chronic treatment with Rho-kinase inhibitor Y-27632 after chronic social defeat stress reverses depression-like behaviors by restoring D1-MSN dendritic complexity. Taken together, our data indicate functional roles for RhoA and Rho-kinase in mediating depression-like behaviors via dendritic remodeling of NAc D1-MSNs and may prove a useful target for new depression therapeutics.


Assuntos
Dendritos/enzimologia , Dendritos/patologia , Depressão/patologia , Depressão/psicologia , Plasticidade Neuronal , Receptores de Dopamina D1/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Depressão/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Receptores de Dopamina D2/metabolismo
8.
Biol Psychiatry ; 87(11): 992-1000, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31858986

RESUMO

BACKGROUND: We previously showed that the transcription factor Egr3 (early growth response 3) is oppositely regulated in nucleus accumbens (NAc) cell subtypes 24 hours following cocaine exposure and bidirectionally mediates cocaine-related behaviors in male rodents. Overexpressing Egr3 in D2 receptor-containing medium spiny neurons (D2-MSNs) before drug exposure reduces the rewarding and psychomotor sensitization effects of cocaine. However, it is unknown if Egr3 plays a role in long-term neuroadaptations in the NAc and relapse to cocaine seeking. METHODS: We measured EGR3 protein levels in the NAc following 20 days of forced abstinence from intravenous cocaine self-administration in 10-week-old Sprague Dawley rats and C57BL/6 mice. In 8- to 10-week-old A2A-Cre mice, we used virally mediated Egr3 overexpression in NAc D2-MSNs to test the role of Egr3 on operant responding during seeking, extinction, and drug-induced reinstatement of cocaine self-administration. To evaluate if Egr3 contributed to sex differences to cocaine relapse, we conducted these procedures in both male and female rodents. RESULTS: We found that EGR3 expression was reduced only in female rodents after 20 days of forced abstinence. Additionally, we showed that our self-administration paradigm in mice recapitulated the sex differences in cocaine intake and relapse demonstrated in humans and rats. Finally, whereas Egr3 overexpression in D2-MSNs during forced abstinence facilitated extinction and blunted drug-induced reinstatement in female mice, it had the opposite effect in male mice. CONCLUSIONS: We showed that the immediate early gene Egr3 has long-term effects on drug-related behaviors. Our work suggests that changes in Egr3 expression in D2-MSNs contributes to sex differences in cocaine relapse.


Assuntos
Cocaína , Animais , Proteína 3 de Resposta de Crescimento Precoce/genética , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Autoadministração
9.
Neuron ; 98(3): 459-461, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29723497

RESUMO

Striatal dopamine signaling is differentially regulated along the dorso-ventral axis, but how these differences are encoded by dopamine receptors is unknown. In this issue of Neuron, Marcott et al. (2018) show that dopamine activates D2 receptors in regionally distinct ways and dissect the underlying mechanisms behind striatal D2 heterogeneity.


Assuntos
Dopamina , Núcleo Accumbens , Corpo Estriado , Neurônios , Receptores de Dopamina D2
10.
Neuron ; 96(6): 1327-1341.e6, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29268097

RESUMO

Altered brain energy homeostasis is a key adaptation occurring in the cocaine-addicted brain, but the effect of cocaine on the fundamental source of energy, mitochondria, is unknown. We demonstrate an increase of dynamin-related protein-1 (Drp1), the mitochondrial fission mediator, in nucleus accumbens (NAc) after repeated cocaine exposure and in cocaine-dependent individuals. Mdivi-1, a demonstrated fission inhibitor, blunts cocaine seeking and locomotor sensitization, while blocking c-Fos induction and excitatory input onto dopamine receptor-1 (D1) containing NAc medium spiny neurons (MSNs). Drp1 and fission promoting Drp1 are increased in D1-MSNs, consistent with increased smaller mitochondria in D1-MSN dendrites after repeated cocaine. Knockdown of Drp1 in D1-MSNs blocks drug seeking after cocaine self-administration, while enhancing the fission promoting Drp1 enhances seeking after long-term abstinence from cocaine. We demonstrate a role for altered mitochondrial fission in the NAc, during early cocaine abstinence, suggesting potential therapeutic treatment of disrupting mitochondrial fission in cocaine addiction.


Assuntos
Cocaína/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Dinaminas/metabolismo , Locomoção/efeitos dos fármacos , Mitocôndrias/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Cocaína/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Inibidores da Captação de Dopamina/administração & dosagem , Inibidores da Captação de Dopamina/farmacologia , Neurônios Dopaminérgicos/ultraestrutura , Dinaminas/genética , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Locomoção/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Núcleo Accumbens/citologia , Quinazolinonas/farmacologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Autoadministração
11.
J Neurosci ; 37(27): 6527-6538, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28576941

RESUMO

Previous research demonstrates that Slc6a15, a neutral amino acid transporter, is associated with depression susceptibility. However, no study examined Slc6a15 in the ventral striatum [nucleus accumbens (NAc)] in depression. Given our previous characterization of Slc6a15 as a striatal dopamine receptor 2 (D2)-neuron-enriched gene, we examined the role of Slc6a15 in NAc D2-neurons in mediating susceptibility to stress in male mice. First, we showed that Slc6a15 mRNA was reduced in NAc of mice susceptible to chronic social defeat stress (CSDS), a paradigm that produces behavioral and molecular adaptations that resemble clinical depression. Consistent with our preclinical data, we observed Slc6a15 mRNA reduction in NAc of individuals with major depressive disorder (MDD). The Slc6a15 reduction in NAc occurred selectively in D2-neurons. Next, we used Cre-inducible viruses combined with D2-Cre mice to reduce or overexpress Slc6a15 in NAc D2-neurons. Slc6a15 reduction in D2-neurons caused enhanced susceptibility to a subthreshold social defeat stress (SSDS) as observed by reduced social interaction, while a reduction in social interaction following CSDS was not observed when Slc6a15 expression in D2-neurons was restored. Finally, since both D2-medium spiny neurons (MSNs) and D2-expressing choline acetyltransferase (ChAT) interneurons express Slc6a15, we examined Slc6a15 protein in these interneurons after CSDS. Slc6a15 protein was unaltered in ChAT interneurons. Consistent with this, reducing Slc5a15 selectively in NAc D2-MSNs, using A2A-Cre mice that express Cre selectively in D2-MSNs, caused enhanced susceptibility to SSDS. Collectively, our data demonstrate that reduced Slc6a15 in NAc occurs in MDD individuals and that Slc6a15 reduction in NAc D2-neurons underlies stress susceptibility.SIGNIFICANCE STATEMENT Our study demonstrates a role for reduced Slc6a15, a neutral amino acid transporter, in nucleus accumbens (NAc) in depression and stress susceptibility. The reduction of Slc6a15 occurs selectively in the NAc D2-neurons. Genetic reduction of Slc6a15 induces susceptibility to a subthreshold stress, while genetic overexpression in D2-neurons prevents social avoidance after chronic social defeat stress.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Dominação-Subordinação , Neurônios Dopaminérgicos/metabolismo , Núcleo Accumbens/fisiopatologia , Receptores de Dopamina D2/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Comportamento Animal , Suscetibilidade a Doenças/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Comportamento Social
12.
Hum Mol Genet ; 26(14): 2603-2615, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28520872

RESUMO

Mutations in the GBA1 gene encoding the lysosomal enzyme glucocerebrosidase (GBA1) are important risk factors for Parkinson's disease (PD). In vitro, altered GBA1 activity promotes alpha-synuclein accumulation whereas elevated levels of alpha-synuclein compromise GBA1 function, thus supporting a pathogenic mechanism in PD. However, the mechanisms by which GBA1 deficiency is linked to increased risk of PD remain elusive, partially because of lack of aged models of GBA1 deficiency. As knocking-out GBA1 in the entire brain induces massive neurodegeneration and early death, we generated a mouse model of GBA1 deficiency amenable to investigate the long-term consequences of compromised GBA1 function in dopaminergic neurons. DAT-Cre and GBA1-floxed mice were bred to obtain selective homozygous disruption of GBA1 in midbrain dopamine neurons (DAT-GBA1-KO). Mice were followed for motor function, neuronal survival, alpha-synuclein phosphorylation and glial activation. Susceptibility to nigral viral vector-mediated overexpression of mutated (A53T) alpha-synuclein was assessed. Despite loss of GBA1 and substrate accumulation, DAT-GBA1-KO mice displayed normal motor performances and preserved dopaminergic neurons despite robust microglial activation in the substantia nigra, without accumulation of endogenous alpha-synuclein with respect to wild-type mice. Lysosomal function was only marginally affected. Screening of micro-RNAs linked to the regulation of GBA1, alpha-synuclein or neuroinflammation did not reveal significant alterations. Viral-mediated overexpression of A53T-alpha-synuclein yielded similar neurodegeneration in DAT-GBA1-KO mice and wild-type mice. These results indicate that loss of GBA1 function in mouse dopaminergic neurons is not critical for alpha-synuclein accumulation or neurodegeneration and suggest the involvement of GBA1 deficiency in other cell types as a potential mechanism.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Animais , Encéfalo/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Vetores Genéticos , Mesencéfalo/metabolismo , Camundongos , Camundongos Knockout , Microglia/metabolismo , Modelos Animais , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo
13.
Biol Psychiatry ; 81(7): 564-572, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27939396

RESUMO

BACKGROUND: Molecules critically involved in cocaine behavioral plasticity are known to regulate and interact with peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). In addition, the PGC-1α promoter has binding sites for early growth response 3 (Egr3), which plays a dynamic role in cocaine action in nucleus accumbens (NAc) medium spiny neuron (MSN) subtypes, those enriched in dopamine receptor D1 (D1-MSN) versus D2 (D2-MSN). However, the role of PGC-1α in NAc in cocaine action is unknown. METHODS: PGC-1α messenger RNA and protein were examined in NAc after repeated cocaine exposure. Binding of Egr3 to and histone methylation at the PGC-1α promoter was examined in NAc using chromatin immunoprecipitation after repeated cocaine. PGC-1α ribosome-associated messenger RNA in MSN subtypes was assessed after repeated cocaine using D1-Cre-RiboTag and D2-Cre-RiboTag lines. Finally, PGC-1α was expressed in NAc D1-MSNs versus D2-MSNs using a Cre-inducible adeno-associated virus and Cre lines during cocaine conditioned place preference and cocaine-induced locomotion. RESULTS: Repeated cocaine increased PGC-1α levels and increased Egr3 binding and H3K4me3 at the PGC-1α promoter in NAc. Increased PGC-1α occurred in D1-MSNs, while D2-MSNs showed reduced levels. Viral-mediated expression of PGC-1α in D1-MSNs enhanced behavioral responses to cocaine, while expression in D2-MSNs blunted these behaviors. CONCLUSIONS: We demonstrate a novel role for PGC-1α in NAc in cocaine action. PGC-1α is enhanced in NAc D1-MSNs, specifically after cocaine exposure. These data are consistent with increased active methylation and Egr3 binding at the PGC-1α promoter. Finally, we demonstrate a bidirectional role for PGC-1α in mediating behavioral plasticity to cocaine through D1-MSNs versus D2-MSNs.


Assuntos
Cocaína/administração & dosagem , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Histonas/metabolismo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
14.
Neuropharmacology ; 109: 69-77, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27216859

RESUMO

Impulse control disorders (ICDs) are debilitating side effects of dopamine replacement therapy (DRT) in Parkinson's disease (PD) that severely affect the quality of life of patients. While DRT, the pattern and extent of neurodegeneration, and prodromic factors of vulnerability (e.g. impulsivity) have all been hypothesized to play a role in the development of ICDs, their respective, and potentially interacting, contributions remain to be established. High impulsive (HI), Intermediate (Int) or low impulsive (LI) rats were identified based on their performance in both a differential reinforcement of low rate of responding (DRL) and a fixed consecutive number (FCN) schedules, that operationalize two independent facets of impulsivity, waiting and action inhibition (motor impulsivity). We investigated whether high impulsivity trait influenced the progressive development of a parkinsonian state induced by viral-mediated overexpression of α-synuclein, and whether impulsivity trait and nigrostriatal neurodegeneration independently or jointly influenced the effects of DRT on impulse control. α-synuclein-induced nigrostriatal neurodegeneration increased both waiting and motor impulsivity. The D2/D3 dopamine receptor agonist pramipexole exacerbated motor impulsivity more than waiting. However, the pramipexole-induced increase in waiting impulsivity observed in both sham and lesioned rats, was more pronounced in HI lesioned rats, which displayed a restricted α-synuclein-induced dopaminergic neurodegeneration. Thus, a PD-like nigrostriatal lesion increases both motor and waiting impulsivity, but its interaction with a pre-existing impulsivity trait, which, at the cellular level, confers resilience to dopaminergic neurodegeneration, worsens the detrimental effects of D2/D3 dopamine receptor agonists on inhibitory control.


Assuntos
Condicionamento Operante/fisiologia , Agonistas de Dopamina/uso terapêutico , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Comportamento Impulsivo/fisiologia , Degeneração Neural/metabolismo , Substância Negra/metabolismo , Animais , Condicionamento Operante/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Comportamento Impulsivo/efeitos dos fármacos , Masculino , Degeneração Neural/induzido quimicamente , Degeneração Neural/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
15.
Biol Psychiatry ; 79(5): 354-361, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25146322

RESUMO

BACKGROUND: ΔFosB is a surrogate marker of L-DOPA-induced dyskinesia (LID), the unavoidable disabling consequence of Parkinson's disease L-DOPA long-term treatment. However, the relationship between the electrical activity of FosB/ΔFosB-expressing neurons and LID manifestation is unknown. METHODS: We used the Daun02 prodrug-inactivation method associated with lentiviral expression of ß-galactosidase under the control of the FosB promoter to investigate a causal link between the activity of FosB/ΔFosB-expressing neurons and dyskinesia severity in both rat and monkey models of Parkinson's disease and LID. Whole-cell recordings of medium spiny neurons (MSNs) were performed to assess the effects of Daun02 and daunorubicin on neuronal excitability. RESULTS: We first show that daunorubicin, the active product of Daun02 metabolism by ß-galactosidase, decreases the activity of MSNs in rat brain slices and that Daun02 strongly decreases the excitability of rat MSN primary cultures expressing ß-galactosidase upon D1 dopamine receptor stimulation. We then demonstrate that the selective, and reversible, inhibition of FosB/ΔFosB-expressing striatal neurons with Daun02 decreases the severity of LID while improving the beneficial effect of L-DOPA. CONCLUSIONS: These results establish that FosB/ΔFosB accumulation ultimately results in altered neuronal electrical properties sustaining maladaptive circuits leading not only to LID but also to a blunted response to L-DOPA. These findings further reveal that targeting dyskinesia can be achieved without reducing the antiparkinsonian properties of L-DOPA when specifically inhibiting FosB/ΔFosB-accumulating neurons.


Assuntos
Antiparkinsonianos/efeitos adversos , Daunorrubicina/análogos & derivados , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Neostriado/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Doença de Parkinson/complicações , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Daunorrubicina/administração & dosagem , Modelos Animais de Doenças , Macaca fascicularis , Masculino , Oxidopamina/administração & dosagem , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo
16.
Acta Neuropathol Commun ; 3: 46, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-26205255

RESUMO

INTRODUCTION: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons as well as the presence of proteinaceous inclusions named Lewy bodies. α-synuclein (α-syn) is a major constituent of Lewy bodies, and the first disease-causing protein characterized in PD. Several α-syn-based animal models of PD have been developed to investigate the pathophysiology of PD, but none of them recapitulate the full picture of the disease. Ageing is the most compelling and major risk factor for developing PD but its impact on α-syn toxicity remains however unexplored. In this study, we developed and exploited a recombinant adeno-associated viral (AAV) vector of serotype 9 overexpressing mutated α-syn to elucidate the influence of ageing on the dynamics of PD-related neurodegeneration associated with α-syn pathology in different mammalian species. RESULTS: Identical AAV pseudotype 2/9 vectors carrying the DNA for human mutant p.A53T α-syn were injected into the substantia nigra to induce neurodegeneration and synucleinopathy in mice, rats and monkeys. Rats were used first to validate the ability of this serotype to replicate α-syn pathology and second to investigate the relationship between the kinetics of α-syn-induced nigrostriatal degeneration and the progressive onset of motor dysfunctions, strikingly reminiscent of the impairments observed in PD patients. In mice, AAV2/9-hα-syn injection into the substantia nigra was associated with accumulation of α-syn and phosphorylated hα-syn, regardless of mouse strain. However, phenotypic mutants with either accelerated senescence or resistance to senescence did not display differential susceptibility to hα-syn overexpression. Of note, p-α-syn levels correlated with nigrostriatal degeneration in mice. In monkeys, hα-syn-induced degeneration of the nigrostriatal pathway was not affected by the age of the animals. Unlike mice, monkeys did not exhibit correlations between levels of phosphorylated α-syn and neurodegeneration. CONCLUSIONS: In conclusion, AAV2/9-mediated hα-syn induces robust nigrostriatal neurodegeneration in mice, rats and monkeys, allowing translational comparisons among species. Ageing, however, neither exacerbated nigrostriatal neurodegeneration nor α-syn pathology per se. Our unprecedented multi-species investigation thus favours the multiple-hit hypothesis for PD wherein ageing would merely be an aggravating, additive, factor superimposed upon an independent disease process.


Assuntos
Envelhecimento , Intoxicação por MPTP/patologia , Degeneração Estriatonigral/patologia , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo , Animais , Fenômenos Biomecânicos , Callithrix , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Intoxicação por MPTP/induzido quimicamente , Camundongos , Atividade Motora , Análise de Componente Principal , Desempenho Psicomotor/fisiologia , Ratos , Degeneração Estriatonigral/etiologia , Fatores de Tempo , Transdução Genética , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Prog Neurobiol ; 132: 96-168, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26209473

RESUMO

Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.


Assuntos
Antiparkinsonianos/efeitos adversos , Sistema Nervoso Central/fisiopatologia , Discinesia Induzida por Medicamentos/fisiopatologia , Levodopa/efeitos adversos , Animais , Sistema Nervoso Central/efeitos dos fármacos , Humanos , Doença de Parkinson/tratamento farmacológico
18.
Cereb Cortex ; 25(9): 2783-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24770706

RESUMO

Beyond dopamine (DA) loss, Parkinson's disease is associated with many other monoamine alterations. While some monoaminergic systems benefit from l-3,4-dihydroxyphenylalanine (l-Dopa) treatment, others seem to be further altered, contributing to dyskinesia and nonmotor symptoms. Surprisingly, the different contributions of parkinsonism and l-Dopa treatment on monoaminergic changes remain largely unknown. Here, both the consequences of vehicle or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposure and the subsequent effects of acute or chronic l-Dopa treatment were evaluated in macaques. Monoamine levels were measured in the putamen, the motor and prefrontal cortices, the hippocampus, and the amygdala using postmortem high-pressure liquid chromatography. In normal monkeys, l-Dopa treatment increased DA in the prefrontal cortex and hippocampus, but decreased serotonin levels in motor domains. Chronic l-Dopa treatment elevated monoamine levels in the prefrontal cortex, hippocampus, and amygdala in both normal and MPTP-treated monkeys. A substantial increase in DA levels in these regions, paralleled by a decrease in serotonin concentrations were related with dyskinesia severity, demonstrating that major changes in monoamine release also occur in nonmotor regions. Such monoaminergic dysregulation in limbic domains may also directly contribute to the expression of motor complications, such as dyskinesia, by impairing integrative processes upstream from motor execution.


Assuntos
Monoaminas Biogênicas/metabolismo , Encéfalo/metabolismo , Discinesia Induzida por Medicamentos/patologia , Intoxicação por MPTP/patologia , Vias Neurais/metabolismo , Análise de Variância , Animais , Antiparkinsonianos/efeitos adversos , Encéfalo/patologia , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Feminino , Levodopa/efeitos adversos , Intoxicação por MPTP/tratamento farmacológico , Macaca mulatta , Vias Neurais/patologia , Fatores de Tempo
20.
Ann Neurol ; 74(1): 140-4, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23494678

RESUMO

Dopamine dysregulation syndrome shares some core behavioral features with psychostimulant addiction, suggesting that dopamine replacement therapy can acquire psychostimulantlike properties in some patients with Parkinson disease (PD). We here report strong experimental evidence supporting this hypothesis in an α-synuclein rat model of PD. Although levodopa had no effect in controls, it acquired 2 prominent psychostimulantlike properties in Parkinsonian rats: (1) it produced intense reward on its own and in parallel (2) decreased interest in other nondrug reward. These 2 effects may combine to explain the addictive use of levodopa after loss of midbrain dopamine neurons in some PD patients.


Assuntos
Antiparkinsonianos/uso terapêutico , Neurônios Dopaminérgicos/patologia , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Substância Negra/patologia , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Antiparkinsonianos/farmacologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Humanos , Levodopa/farmacologia , Masculino , Mutação/genética , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Ratos , Ratos Wistar , Recompensa , Sacarina/administração & dosagem , Edulcorantes/administração & dosagem , Paladar/efeitos dos fármacos , Transdução Genética , Tirosina 3-Mono-Oxigenase/metabolismo , Ubiquitina/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA