Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Am Soc Mass Spectrom ; 34(6): 1073-1085, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37186948

RESUMO

Here we describe a state-of-the-art, integrated, multi-instrument automated system designed to execute methods involved in mass spectrometry characterization of biotherapeutics. The system includes liquid and microplate handling robotics and utilities, integrated LC-MS, along with data analysis software, to perform sample purification, preparation, and analysis as a seamless integrated unit. The automated process begins with tip-based purification of target proteins from expression cell-line supernatants, which is initiated once the samples are loaded onto the automated system and the metadata are retrieved from our corporate data aggregation system. Subsequently, the purified protein samples are prepared for MS, including deglycosylation and reduction steps for intact and reduced mass analysis, and proteolytic digestions, desalting, and buffer exchange via centrifugation for peptide map analysis. The prepared samples are then loaded into the LC-MS instrumentation for data acquisition. The acquired raw data are initially stored on a local area network storage system that is monitored by watcher scripts that then upload the raw MS data to a network of cloud-based servers. The raw MS data are processed with the appropriately configured analysis workflows such as database search for peptide mapping or charge deconvolution for undigested proteins. The results are verified and formatted for expert curation directly in the cloud. Finally, the curated results are appended to sample metadata in the corporate data aggregation system to accompany the biotherapeutic cell lines in subsequent processes.


Assuntos
Peptídeos , Proteínas , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Proteínas/química , Peptídeos/química , Software
2.
Anal Chem ; 93(47): 15728-15735, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34788003

RESUMO

Electron transfer dissociation (ETD) is an analytically useful tool for primary structure interrogation of intact proteins, but its utility is limited by higher-order reactions with the products. To inhibit these higher-order reactions, first-generation fragment ions are kinetically excited by applying an experimentally tailored parallel ion parking waveform during ETD (ETD-PIP). In combination with subsequent ion/ion proton transfer reactions, precursor-to-product conversion was maximized as evidenced by the consumption of more than 90% of the 21 kDa Protein G precursor to form ETD product ions. The employment of ETD-PIP increased sequence coverage to 90% from 80% with standard ETD. Additionally, the inhibition of sequential electron transfers was reflected in the high number of complementary ion pairs from ETD-PIP (90%) compared to standard ETD (39%).


Assuntos
Elétrons , Proteínas , Transporte de Elétrons , Íons , Análise de Sequência
3.
J Am Soc Mass Spectrom ; 30(10): 2163-2173, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31392699

RESUMO

We have enabled parallel ion parking on a modified Orbitrap Elite™ as a way to control ion-ion proton transfer reactions via selective activation of a range of ions. The result is the concentration of the majority of ion current from multiple charge states of each precursor proteoform into a single charge state, maximizing signal intensity and increasing effective sensitivity compared to conventional MS1 spectra. These techniques were applied in an on-line HPLC, data-dependent MS/MS analysis of intact E. coli ribosomal proteins with HCD fragmentation. With one injection, all but two ribosomal proteins were selected for fragmentation and subsequently identified. The techniques described facilitate rapid identification of intact proteins in complex mixtures and an enhanced ability to observe proteins of low abundance.

4.
J Am Soc Mass Spectrom ; 28(9): 1787-1795, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28721671

RESUMO

High resolution mass spectrometry is a key technology for in-depth protein characterization. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-level interrogation of intact proteins in the most detail to date. However, an appropriate complement of fragmentation technologies must be paired with FTMS to provide comprehensive sequence coverage, as well as characterization of sequence variants, and post-translational modifications. Here we describe the integration of front-end electron transfer dissociation (FETD) with a custom-built 21 tesla FT-ICR mass spectrometer, which yields unprecedented sequence coverage for proteins ranging from 2.8 to 29 kDa, without the need for extensive spectral averaging (e.g., ~60% sequence coverage for apo-myoglobin with four averaged acquisitions). The system is equipped with a multipole storage device separate from the ETD reaction device, which allows accumulation of multiple ETD fragment ion fills. Consequently, an optimally large product ion population is accumulated prior to transfer to the ICR cell for mass analysis, which improves mass spectral signal-to-noise ratio, dynamic range, and scan rate. We find a linear relationship between protein molecular weight and minimum number of ETD reaction fills to achieve optimum sequence coverage, thereby enabling more efficient use of instrument data acquisition time. Finally, real-time scaling of the number of ETD reactions fills during method-based acquisition is shown, and the implications for LC-MS/MS top-down analysis are discussed. Graphical Abstract ᅟ.


Assuntos
Espectrometria de Massas/métodos , Proteínas/análise , Proteínas/química , Análise de Sequência de Proteína/métodos , Elétrons , Desenho de Equipamento , Análise de Fourier , Espectrometria de Massas/instrumentação , Análise de Sequência de Proteína/instrumentação , Espectrometria de Massas em Tandem
5.
Mol Cell Proteomics ; 15(3): 975-88, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26785730

RESUMO

Histones represent a class of proteins ideally suited to analyses by top-down mass spectrometry due to their relatively small size, the high electron transfer dissociation-compatible charge states they exhibit, and the potential to gain valuable information concerning combinatorial post-translational modifications and variants. We recently described new methods in mass spectrometry for the acquisition of high-quality MS/MS spectra of intact proteins (Anderson, L. C., English, A. M., Wang, W., Bai, D. L., Shabanowitz, J., and Hunt, D. F. (2015) Int. J. Mass Spectrom. 377, 617-624). Here, we report an extension of these techniques. Sequential ion/ion reactions carried out in a modified Orbitrap Velos Pro/Elite(TM) capable of multiple fragment ion fills of the C-trap, in combination with data-dependent and targeted HPLC-MS experiments, were used to obtain high resolution MS/MS spectra of histones from butyrate-treated HeLa cells. These spectra were used to identify several unique intact histone proteoforms with up to 81% sequence coverage. We also demonstrate that parallel ion parking during ion/ion proton transfer reactions can be used to separate species of overlapping m/z that are not separated chromatographically, revealing previously indiscernible signals. Finally, we characterized several truncated forms of H2A and H2B found within the histone fractions analyzed, achieving up to 93% sequence coverage by electron transfer dissociation MS/MS. Results of follow-up in vitro experiments suggest that some of the truncated histone H2A proteoforms we observed can be generated by cathepsin L, an enzyme known to also catalyze clipping of histone H3.


Assuntos
Histonas/metabolismo , Proteoma/análise , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Butiratos/química , Variação Genética , Células HeLa , Histonas/genética , Humanos , Processamento de Proteína Pós-Traducional
6.
Mol Cell Proteomics ; 15(4): 1479-88, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26621848

RESUMO

Methodology for sequence analysis of ∼150 kDa monoclonal antibodies (mAb), including location of post-translational modifications and disulfide bonds, is described. Limited digestion of fully denatured (reduced and alkylated) antibody was accomplished in seconds by flowing a sample in 8murea at a controlled flow rate through a micro column reactor containing immobilized aspergillopepsin I. The resulting product mixture containing 3-9 kDa peptides was then fractionated by capillary column liquid chromatography and analyzed on-line by both electron-transfer dissociation and collisionally activated dissociation mass spectrometry (MS). This approach enabled identification of peptides that cover the complete sequence of a murine mAb. With customized tandem MS and ProSightPC Biomarker search, we verified 95% amino acid residues of this mAb and identified numerous post-translational modifications (oxidized methionine, pyroglutamylation, deamidation of Asn, and several forms ofN-linked glycosylation). For disulfide bond location, native mAb is subjected to the same procedure but with longer digestion times controlled by sample flow rate through the micro column reactor. Release of disulfide containing peptides from accessible regions of the folded antibody occurs with short digestion times. Release of those in the interior of the molecule requires longer digestion times. The identity of two peptides connected by a disulfide bond is determined using a combination of electron-transfer dissociation and ion-ion proton transfer chemistry to read the two N-terminal and two C-terminal sequences of the connected peptides.


Assuntos
Anticorpos Monoclonais/metabolismo , Proteólise , Análise de Sequência de Proteína/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Camundongos , Modelos Moleculares , Conformação Proteica , Processamento de Proteína Pós-Traducional , Fatores de Tempo
7.
PLoS One ; 10(5): e0124878, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26024233

RESUMO

Immune mediated adverse drug reactions (IM-ADRs) remain a significant source of patient morbidity that have more recently been shown to be associated with specific class I and/or II human leukocyte antigen (HLA) alleles. Abacavir-induced hypersensitivity syndrome is a CD8+ T cell dependent IM-ADR that is exclusively mediated by HLA-B*57:01. We and others have previously shown that abacavir can occupy the floor of the peptide binding groove of HLA-B*57:01 molecules, increasing the affinity of certain self peptides resulting in an altered peptide-binding repertoire. Here, we have identified another drug, acyclovir, which appears to act in a similar fashion. As with abacavir, acyclovir showed a dose dependent increase in affinity for peptides with valine and isoleucine at their C-terminus. In agreement with the binding studies, HLA-B*57:01 peptide-elution studies performed in the presence of acyclovir revealed an increased number of endogenously bound peptides with a C-terminal isoleucine. Accordingly, we have hypothesized that acyclovir acts by the same mechanism as abacavir, although our data also suggest the overall effect is much smaller: the largest changes of peptide affinity for acyclovir were 2-5 fold, whereas for abacavir this effect was as much as 1000-fold. Unlike abacavir, acyclovir is not known to cause IM-ADRs. We conclude that the modest effect of acyclovir on HLA binding affinity in contrast to the large effect of abacavir is insufficient to trigger a hypersensitivity syndrome. We further support this by functional in vitro studies where acyclovir, unlike abacavir, was unable to produce an increase in IFN-γ upon expansion of HLA-B*57:01+ PBMCs from healthy donors. Using abacavir and acyclovir as examples we therefore propose an in vitro pre-clinical screening strategy, whereby thresholds can be applied to MHC-peptide binding assays to determine the likelihood that a drug could cause a clinically relevant IM-ADR.


Assuntos
Aciclovir/imunologia , Aciclovir/metabolismo , Antivirais/imunologia , Antivirais/metabolismo , Hipersensibilidade a Drogas/imunologia , Antígenos HLA-B/metabolismo , Células Cultivadas , Humanos , Ligação Proteica
8.
Int J Mass Spectrom ; 377: 617-624, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25844056

RESUMO

Previously, we described implementation of a front-end ETD (electron transfer dissociation) source for an Orbitrap instrument (1). This source facilitates multiple fills of the C-trap with product ions from ETD of intact proteins prior to mass analysis. The result is a dramatic enhancement of the observed ion current without the need for time consuming averaging of data from multiple mass measurements. Here we show that ion-ion proton transfer (IIPT) reactions can be used to simplify ETD spectra and to disperse fragment ions over the entire mass range in a controlled manner. We also show that protein derivatization can be employed to selectively enhance the sequence information observed at the N- and C-termini of a protein.

9.
J Immunol ; 191(10): 5097-106, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24108701

RESUMO

Insights gained from characterizing MHC-peptide-TCR interactions have held the promise that directed structural modifications can have predictable functional consequences. The ability to manipulate T cell reactivity synthetically or through genetic engineering might thus be translated into new therapies for common diseases such as cancer and autoimmune disorders. In the current study, we determined the crystal structure of HLA-DR4 in complex with the nonmutated dominant gp100 epitope gp10044-59, associated with many melanomas. Altered peptide ligands (APLs) were designed to enhance MHC binding and hence T cell recognition of gp100 in HLA-DR4(+) melanoma patients. Increased MHC binding of several APLs was observed, validating this approach biochemically. Nevertheless, heterogeneous preferences of CD4(+) T cells from several HLA-DR4(+) melanoma patients for different gp100 APLs suggested highly variable TCR usage, even among six patients who had been vaccinated against the wild-type gp100 peptide. This heterogeneity prevented the selection of an APL candidate for developing an improved generic gp100 vaccine in melanoma. Our results are consistent with the idea that even conservative changes in MHC anchor residues may result in subtle, yet crucial, effects on peptide contacts with the TCR or on peptide dynamics, such that alterations intended to enhance immunogenicity may be unpredictable or counterproductive. They also underscore a critical knowledge gap that needs to be filled before structural and in vitro observations can be used reliably to devise new immunotherapies for cancer and other disorders.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígeno HLA-DR4/ultraestrutura , Melanoma/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Antígeno gp100 de Melanoma/ultraestrutura , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Antígeno HLA-DR4/imunologia , Antígeno HLA-DR4/metabolismo , Humanos , Melanoma/prevenção & controle , Melanoma/terapia , Difração de Raios X , Antígeno gp100 de Melanoma/imunologia , Antígeno gp100 de Melanoma/metabolismo
10.
Anal Chem ; 85(17): 8385-90, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23909443

RESUMO

Electron transfer dissociation (ETD), a technique that provides efficient fragmentation while depositing little energy into vibrational modes, has been widely integrated into proteomics workflows. Current implementations of this technique, as well as other ion-ion reactions like proton transfer, involve sophisticated hardware, lack robustness, and place severe design limitations on the instruments to which they are attached. Described herein is a novel, electrical discharge-based reagent ion source that is located in the first differentially pumped region of the mass spectrometer. The reagent source was found to produce intense reagent ion signals over extended periods of time while having no measurable impact on precursor ion signal. Further, the source is simple to construct and enables implementation of ETD on any instrument without modification to footprint. Finally, in the context of hybrid mass spectrometers, relocation of the reagent ion source to the front of the mass spectrometer enables new approaches to gas phase interrogation of intact proteins.


Assuntos
Transporte de Elétrons , Espectrometria de Massas por Ionização por Electrospray/métodos , Íons
11.
Immunogenetics ; 65(5): 371-86, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23417323

RESUMO

Chinese rhesus macaques are of particular interest in simian immunodeficiency virus/human immunodeficiency virus (SIV/HIV) research as these animals have prolonged kinetics of disease progression to acquired immunodeficiency syndrome (AIDS), compared to their Indian counterparts, suggesting that they may be a better model for HIV. Nevertheless, the specific mechanism(s) accounting for these kinetics remains unclear. The study of major histocompatibility complex (MHC) molecules, including their MHC/peptide-binding motifs, provides valuable information for measuring cellular immune responses and deciphering outcomes of infection and vaccine efficacy. In this study, we have provided detailed characterization of six prevalent Chinese rhesus macaque MHC class I alleles, yielding a combined phenotypic frequency of 29 %. The peptide-binding specificity of two of these alleles, Mamu-A2*01:02 and Mamu-B*010:01, as well as the previously characterized allele Mamu-B*003:01 (and Indian rhesus Mamu-B*003:01), was found to be analogous to that of alleles in the HLA-B27 supertype family. Specific alleles in the HLA-B27 supertype family, including HLA-B*27:05, have been associated with long-term nonprogression to AIDS in humans. All six alleles characterized in the present study were found to have specificities analogous to HLA supertype alleles. These data contribute to the concept that Chinese rhesus macaque MHC immunogenetics is more similar to HLA than their Indian rhesus macaque counterparts and thereby warrants further studies to decipher the role of these alleles in the context of SIV infection.


Assuntos
Motivos de Aminoácidos , Antígenos HLA/genética , Antígeno HLA-B27/genética , Fragmentos de Peptídeos/genética , Alelos , Animais , Antígenos HLA/imunologia , Antígenos HLA/metabolismo , Antígeno HLA-B27/imunologia , Antígeno HLA-B27/metabolismo , Humanos , Macaca mulatta , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Biblioteca de Peptídeos , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Proc Natl Acad Sci U S A ; 109(25): 9959-64, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22645359

RESUMO

Idiosyncratic adverse drug reactions are unpredictable, dose-independent and potentially life threatening; this makes them a major factor contributing to the cost and uncertainty of drug development. Clinical data suggest that many such reactions involve immune mechanisms, and genetic association studies have identified strong linkages between drug hypersensitivity reactions to several drugs and specific HLA alleles. One of the strongest such genetic associations found has been for the antiviral drug abacavir, which causes severe adverse reactions exclusively in patients expressing the HLA molecular variant B*57:01. Abacavir adverse reactions were recently shown to be driven by drug-specific activation of cytokine-producing, cytotoxic CD8(+) T cells that required HLA-B*57:01 molecules for their function; however, the mechanism by which abacavir induces this pathologic T-cell response remains unclear. Here we show that abacavir can bind within the F pocket of the peptide-binding groove of HLA-B*57:01, thereby altering its specificity. This provides an explanation for HLA-linked idiosyncratic adverse drug reactions, namely that drugs can alter the repertoire of self-peptides presented to T cells, thus causing the equivalent of an alloreactive T-cell response. Indeed, we identified specific self-peptides that are presented only in the presence of abacavir and that were recognized by T cells of hypersensitive patients. The assays that we have established can be applied to test additional compounds with suspected HLA-linked hypersensitivities in vitro. Where successful, these assays could speed up the discovery and mechanistic understanding of HLA-linked hypersensitivities, and guide the development of safer drugs.


Assuntos
Hipersensibilidade a Drogas , Complexo Principal de Histocompatibilidade , Peptídeos/química , Sequência de Aminoácidos , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Modelos Moleculares
13.
Immunogenetics ; 64(6): 461-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22278177

RESUMO

Rhesus and pigtail macaques have proven to be valuable animal models for several important human diseases, including HIV, where they exhibit similar pathology and disease progression. Because rhesus macaques have been extensively characterized in terms of their major histocompatibility complex (MHC) class I alleles, their demand has soared, making them increasingly difficult to obtain for research purposes. This problem has been exacerbated by a continued export ban in place since 1978. Pigtail macaques represent a potential alternative animal model. However, because their MHC class I alleles have not been characterized in detail, their use has been hindered. To address this, in the present study, we have characterized the peptide binding specificity of the pigtail macaque class I allele Mane-A1*082:01 (formerly known as Mane A*0301), representative of the second most common MHC class I antigen detected across several cohorts. The motif was defined on the basis of binding studies utilizing purified MHC protein and panels of single amino acid substitution analog peptides, as well as sequences of peptide ligands eluted from Mane-A1*082:01. Based on these analyses, Mane-A1*082:01 was found to recognize a motif with H in position 2 and the aromatic residues F and Y, or the hydrophobic/aliphatic residue M, at the C-terminus. Finally, analysis of the binding of a combinatorial peptide library allowed the generation of a detailed quantitative motif that proved effective in the prediction of a set of high-affinity binders derived from chimeric SIV/HIV, an important model virus for studying HIV infection in humans.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Macaca nemestrina/imunologia , Peptídeos/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Vírus da Imunodeficiência Símia/imunologia
14.
Proc Natl Acad Sci U S A ; 106(29): 12073-8, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19581576

RESUMO

The activation and recruitment of CD4(+) T cells are critical for the development of efficient antitumor immunity and may allow for the optimization of current cancer immunotherapy strategies. Searching for more optimal and selective targets for CD4(+) T cells, we have investigated phosphopeptides, a new category of tumor-derived epitopes linked to proteins with vital cellular functions. Although MHC I-restricted phosphopeptides have been identified, it was previously unknown whether human MHC II molecules present phosphopeptides for specific CD4(+) T cell recognition. We first demonstrated the fine specificity of human CD4(+) T cells to discriminate a phosphoresidue by using cells raised against the candidate melanoma antigen mutant B-Raf or its phosphorylated counterpart. Then, we assessed the presence and complexity of human MHC II-associated phosphopeptides by analyzing 2 autologous pairs of melanoma and EBV-transformed B lymphoblastoid lines. By using sequential affinity isolation, biochemical enrichment, mass spectrometric sequencing, and comparative analysis, a total of 175 HLA-DR-associated phosphopeptides were characterized. Many were derived from source proteins that may have roles in cancer development, growth, and metastasis. Most were expressed exclusively by either melanomas or transformed B cells, suggesting the potential to define cell type-specific phosphatome "fingerprints." We then generated HLA-DRbeta1*0101-restricted CD4(+) T cells specific for a phospho-MART-1 peptide identified in both melanoma cell lines. These T cells showed specificity for phosphopeptide-pulsed antigen-presenting cells as well as for intact melanoma cells. This previously undescribed demonstration of MHC II-restricted phosphopeptides recognizable by human CD4(+) T cells provides potential new targets for cancer immunotherapy.


Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Imunoterapia , Melanoma/imunologia , Fosfopeptídeos/imunologia , Sequência de Aminoácidos , Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos HLA-DR/imunologia , Humanos , Antígeno MART-1 , Dados de Sequência Molecular , Mutação/genética , Proteínas de Neoplasias/imunologia , Fosfopeptídeos/química , Proteínas Proto-Oncogênicas B-raf/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA