Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr ; 154(3): 875-885, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072152

RESUMO

BACKGROUND: The current pediatric practice of monitoring for infantile iron deficiency (ID) via hemoglobin (Hgb) screening at one y of age does not identify preanemic ID nor protect against later neurocognitive deficits. OBJECTIVES: To identify biomarkers of iron-related metabolic alterations in the serum and brain and determine the sensitivity of conventional iron and heme indices for predicting risk of brain metabolic dysfunction using a nonhuman primate model of infantile ID. METHODS: Simultaneous serum iron and RBC indices, and serum and cerebrospinal fluid (CSF) metabolomic profiles were determined in 20 rhesus infants, comparing iron sufficient (IS; N = 10) and ID (N = 10) infants at 2 and 4 mo of age. RESULTS: Reticulocyte hemoglobin (RET-He) was lower at 2 wk in the ID group. Significant IS compared with ID differences in serum iron indices were present at 2 mo, but Hgb and RBC indices differed only at 4 mo (P < 0.05). Serum and CSF metabolomic profiles of the ID and IS groups differed at 2 and 4 mo (P < 0.05). Key metabolites, including homostachydrine and stachydrine (4-5-fold lower at 4 mo in ID group, P < 0.05), were altered in both serum and CSF. Iron indices and RET-He at 2 mo, but not Hgb or other RBC indices, were correlated with altered CSF metabolic profile at 4 mo and had comparable predictive accuracy (area under the receiver operating characteristic curve scores, 0.75-0.80). CONCLUSIONS: Preanemic ID at 2 mo was associated with metabolic alterations in serum and CSF in infant monkeys. Among the RBC indices, only RET-He predicted the future risk of abnormal CSF metabolic profile with a predictive accuracy comparable to serum iron indices. The concordance of homostachydrine and stachydrine changes in serum and CSF indicates their potential use as early biomarkers of brain metabolic dysfunction in infantile ID.


Assuntos
Anemia Ferropriva , Encefalopatias , Deficiências de Ferro , Animais , Lactente , Humanos , Criança , Anemia Ferropriva/complicações , Anemia Ferropriva/diagnóstico , Macaca mulatta/metabolismo , Prognóstico , Ferro/metabolismo , Hemoglobinas/metabolismo , Encefalopatias/metabolismo , Biomarcadores , Encéfalo/metabolismo
2.
Am J Physiol Regul Integr Comp Physiol ; 325(4): R423-R432, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602386

RESUMO

Perinatal iron deficiency (FeD) targets the hippocampus and leads to long-term cognitive deficits. Intranasal insulin administration improves cognitive deficits in adult humans with Alzheimer's disease and type 2 diabetes and could provide benefits in FeD-induced hippocampal dysfunction. To objective was to assess the effects of intranasal insulin administration intranasal insulin administration on the hippocampal transcriptome in a developing rat model of perinatal FeD. Perinatal FeD was induced using low-iron diet from gestational day 3 until postnatal day (P) 7, followed by an iron sufficient (FeS) diet through P21. Intranasal insulin was administered at a dose of 0.3 IU twice daily from P8 to P21. Hippocampi were removed on P21 from FeS control, FeD control, FeS insulin, and FeD insulin groups. Total RNA was isolated and profiled using next-generation sequencing. Gene expression profiles were characterized using custom workflows and expression patterns examined using ingenuity pathways analysis (n = 7-9 per group). Select RNAseq results were confirmed via qPCR. Transcriptomic profiling revealed that mitochondrial biogenesis and flux, oxidative phosphorylation, quantity of neurons, CREB signaling in neurons, and RICTOR-based mTOR signaling were disrupted with FeD and positively affected by intranasal insulin treatment with the most benefit observed in the FeD insulin group. Both perinatal FeD and intranasal insulin administration altered gene expression profile in the developing hippocampus. Intranasal insulin treatment reversed the adverse effects of FeD on many molecular pathways and could be explored as an adjunct therapy in perinatal FeD.


Assuntos
Diabetes Mellitus Tipo 2 , Deficiências de Ferro , Adulto , Humanos , Feminino , Gravidez , Animais , Ratos , Insulina , Transcriptoma , Hipocampo , Ferro , Alvo Mecanístico do Complexo 2 de Rapamicina
3.
Cell Transplant ; 32: 9636897231189301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37493283

RESUMO

Periventricular-intraventricular hemorrhage (PIVH) is common in extremely low gestational age neonates (ELGAN) and leads to motor and behavioral impairments. Currently there is no effective treatment for PIVH. Whether human nonhematopoietic umbilical cord blood-derived stem cell (nh-UCBSC) administration reduces the severity of brain injury and improves long-term motor and behavioral function was tested in an ELGAN-equivalent neonatal rat model of PIVH. In a collagenase-induced unilateral PIVH on postnatal day (P) 2 model, rat pups received a single dose of nh-UCBSCs at a dose of 1 × 106 cells i.p. on P6 (PIVH + UCBSC group) or were left untreated (Untreated PIVH group). Motor deficit was determined using forelimb placement, edge-push, and elevated body swing tests at 2 months (N = 5-8). Behavior was evaluated using open field exploration and rearing tests at 4 months (N =10-12). Cavity volume and hemispheric volume loss on the PIVH side were determined at 7 months (N = 6-7). Outcomes were compared between the Untreated PIVH and PIVH + UCBSC groups and a Control group. Unilateral motor deficits were present in 60%-100% of rats in the Untreated PIVH group and 12.5% rats in the PIVH + UCBSC group (P = 0.02). Untreated PIVH group exhibited a higher number of quadrant crossings in open field exploration, indicating low emotionality and poor habituation, and had a cavitary lesion and hemispheric volume loss on the PIVH side. Performance in open field exploration correlated with cavity volume (r2 = 0.25; P < 0.05). Compared with the Untreated PIVH group, performance in open field exploration was better (P = 0.0025) and hemispheric volume loss was lower (19.9 ± 4.4% vs 6.1 ± 2.6%, P = 0.018) in the PIVH + UCBSC group. These results suggest that a single dose of nh-UCBSCs administered in the subacute period after PIVH reduces the severity of injury and improves neurodevelopment in neonatal rats.


Assuntos
Hemorragia Cerebral , Sangue Fetal , Humanos , Ratos , Animais , Animais Recém-Nascidos , Hemorragia Cerebral/terapia , Idade Gestacional , Células-Tronco
4.
J Nutr ; 153(1): 148-157, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913448

RESUMO

BACKGROUND: Infantile iron deficiency (ID) causes anemia and compromises neurodevelopment. Current screening relies on hemoglobin (Hgb) determination at 1 year of age, which lacks sensitivity and specificity for timely detection of infantile ID. Low reticulocyte Hgb equivalent (RET-He) indicates ID, but its predictive accuracy relative to conventional serum iron indices is unknown. OBJECTIVES: The objective was to compare diagnostic accuracies of iron indices, red blood cell (RBC) indices, and RET-He for predicting the risk of ID and IDA in a nonhuman primate model of infantile ID. METHODS: Serum iron, total iron binding capacity, unsaturated iron binding capacity, transferrin saturation (TSAT), Hgb, RET-He, and other RBC indices were determined at 2 wk and 2, 4, and 6 mo in breastfed male and female rhesus infants (N = 54). The diagnostic accuracies of RET-He, iron, and RBC indices for predicting the development of ID (TSAT < 20%) and IDA (Hgb < 10 g/dL + TSAT < 20%) were determined using t tests, area under the receiver operating characteristic curve (AUC) analysis, and multiple regression models. RESULTS: Twenty-three (42.6%) infants developed ID and 16 (29.6%) progressed to IDA. All 4 iron indices and RET-He, but not Hgb or RBC indices, predicted future risk of ID and IDA (P < 0.001). The predictive accuracy of RET-He (AUC = 0.78, SE = 0.07; P = 0.003) for IDA was comparable to that of the iron indices (AUC = 0.77-0.83, SE = 0.07; P ≤ 0.002). A RET-He threshold of 25.5 pg strongly correlated with TSAT < 20% and correctly predicted IDA in 10 of 16 infants (sensitivity: 62.5%) and falsely predicted possibility of IDA in only 4 of 38 unaffected infants (specificity: 89.5%). CONCLUSIONS: RET-He is a biomarker of impending ID/IDA in rhesus infants and can be used as a hematological parameter to screen for infantile ID.


Assuntos
Anemia Ferropriva , Anemia , Deficiências de Ferro , Masculino , Feminino , Animais , Reticulócitos/química , Reticulócitos/metabolismo , Anemia/metabolismo , Hemoglobinas/metabolismo , Ferro/metabolismo , Primatas/metabolismo
5.
Dev Neurosci ; 44(6): 590-602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36041414

RESUMO

Hyperglycemia due to relative hypoinsulinism is common in extremely preterm infants and is associated with hippocampus-mediated long-term cognitive impairment. In neonatal rats, hypoinsulinemic hyperglycemia leads to oxidative stress, altered neurochemistry, microgliosis, and abnormal synaptogenesis in the hippocampus. Intranasal insulin (INS) bypasses the blood-brain barrier, targets the brain, and improves synaptogenesis in rodent models, and memory in adult humans with Alzheimer's disease or type 2 diabetes, without altering the blood levels of insulin or glucose. To test whether INS improves hippocampal development in neonatal hyperglycemia, rat pups were subjected to hypoinsulinemic hyperglycemia by injecting streptozotocin (STZ) at a dose of 80 mg/kg i.p. on postnatal day (P) 2 and randomized to INS, 0.3U twice daily from P3-P6 (STZ + INS group), or no treatment (STZ group). The acute effects on hippocampal neurochemical profile and transcript mRNA expression of insulin receptor (Insr), glucose transporters (Glut1, Glut4, and Glut8), and poly(ADP-ribose) polymerase-1 (Parp1, a marker of oxidative stress) were determined on P7 using in vivo 1H MR spectroscopy (MRS) and qPCR. The long-term effects on the neurochemical profile, microgliosis, and synaptogenesis were determined at adulthood using 1H MRS and histochemical analysis. Relative to the control (CONT) group, mean blood glucose concentration was higher from P3 to P6 in the STZ and STZ + INS groups. On P7, MRS showed 10% higher taurine concentration in both STZ groups. qPCR showed 3-folds higher Insr and 5-folds higher Glut8 expression in the two STZ groups. Parp1 expression was 18% higher in the STZ group and normal in the STZ + INS group. At adulthood, blood glucose concentration in the fed state was higher in the STZ and STZ + INS groups. MRS showed 59% higher brain glucose concentration and histochemistry showed microgliosis in the hippocampal subareas in the STZ group. Brain glucose was normal in the STZ + INS group. Compared with the STZ group, phosphocreatine and phosphocreatine/creatine ratio were higher, and microglia in the hippocampal subareas fewer in the STZ + INS group (p < 0.05 for all). Neonatal hyperglycemia was associated with abnormal glucose metabolism and microgliosis in the adult hippocampus. INS administration during hyperglycemia attenuated these adverse effects and improved energy metabolism in the hippocampus.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Recém-Nascido , Humanos , Ratos , Animais , Adulto , Insulina/metabolismo , Insulina/farmacologia , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Fosfocreatina/metabolismo , Recém-Nascido Prematuro , Hiperglicemia/tratamento farmacológico , Hiperglicemia/complicações , Hipocampo/metabolismo , Glucose , Estreptozocina/metabolismo , Estreptozocina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA