Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337559

RESUMO

In the realm of hematopoiesis, hematopoietic stem cells (HSCs) serve as pivotal entities responsible for generating various blood cell types, initiating both the myeloid and lymphoid branches within the hematopoietic lineage. This intricate process is marked by genetic variations that underscore the crucial role of genes in regulating cellular functions and interactions. Recognizing the significance of genetic factors in this context, this article delves into a genetic perspective, aiming to unravel the biological factors that govern the transition from one cell's fate to another within the hematopoietic system. To gain deeper insights into the genetic traits of three distinct blood cell types-HSCs, erythroblasts (EBs), and megakaryocytes (MKs)-we conducted a comprehensive transcriptomic analysis. Leveraging diverse hematopoietic cell datasets from healthy individuals, sourced from The BLUEPRINT consortium, our investigation targeted the identification of genetic variants responsible for changes in gene expression levels and epigenetic modifications across the entire human genome in each of these cell types. The total number of normalized expressed transcripts includes 14,233 novel trinity lncRNAs, 13,749 mRNAs, and 3092 lncRNAs. This scrutiny revealed a total of 31,074 transcripts, with a notable revelation that 14,233 of them were previously unidentified or novel lncRNAs, highlighting a substantial reservoir of genetic information yet to be explored. Examining their expression across distinct lineages further unveiled 2845 differentially expressed (DE) mRNAs and 354 DE long noncoding RNAs (lncRNAs) notably enriched among the three distinct blood cell types: HSCs, EBs, and MKs. Our investigation extended beyond mRNA to focus on the dynamic expression of lncRNAs, revealing a well-defined pattern that played a significant role in regulating differentiation and cell-fate specification. This coordination of lncRNA dynamics extended to aberrations in both mRNA and lncRNA transcriptomes within HSCs, EBs, and MKs. We specifically characterized lncRNAs with preferential expression in HSCs, as well as in various downstream differentiated lineage progenitors of EBs and MKs, providing a comprehensive perspective on lncRNAs in human hematopoietic cells. Notably, the expression of lncRNAs exhibited substantial cell-to-cell variation, a phenomenon discernible only through single-cell analysis. The comparative analysis undertaken in this study provides valuable insights into the distinctive genetic signatures guiding the differentiation of these crucial hematopoietic cell types.


Assuntos
Linhagem da Célula , Células-Tronco Hematopoéticas , Megacariócitos , RNA Longo não Codificante , Transcriptoma , Humanos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Linhagem da Célula/genética , Megacariócitos/metabolismo , Megacariócitos/citologia , RNA Longo não Codificante/genética , Hematopoese/genética , Eritroblastos/metabolismo , Eritroblastos/citologia , Perfilação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Diferenciação Celular/genética
2.
bioRxiv ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38826218

RESUMO

Analysis of lung alveolar type 2 (AT2) progenitor stem cells has highlighted fundamental mechanisms that direct their differentiation into alveolar type 1 cells (AT1s) in lung repair and disease. However, microRNA (miRNA) mediated post-transcriptional mechanisms which govern this nexus remain understudied. We show here that the let-7 miRNA family serves a homeostatic role in governance of AT2 quiescence, specifically by preventing the uncontrolled accumulation of AT2 transitional cells and by promoting AT1 differentiation to safeguard the lung from spontaneous alveolar destruction and fibrosis. Using mice and organoid models with genetic ablation of let-7a1/let-7f1/let-7d cluster (let-7afd) in AT2 cells, we demonstrate prevents AT1 differentiation and results in aberrant accumulation of AT2 transitional cells in progressive pulmonary fibrosis. Integration of enhanced AGO2 UV-crosslinking and immunoprecipitation sequencing (AGO2-eCLIP) with RNA-sequencing from AT2 cells uncovered the induction of direct targets of let-7 in an oncogene feed-forward regulatory network including BACH1/EZH2 which drives an aberrant fibrotic cascade. Additional analyses by CUT&RUN-sequencing revealed loss of let-7afd hampers AT1 differentiation by eliciting aberrant histone EZH2 methylation which prevents the exit of AT2 transitional cells into terminal AT1s. This study identifies let-7 as a key gatekeeper of post-transcriptional and epigenetic chromatin signals to prevent AT2-driven pulmonary fibrosis.

3.
Animals (Basel) ; 14(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38473177

RESUMO

There is still limited information on the genomic structure and genetic diversity of African pigs. Genetic diversity studies can contribute significantly to the genetic improvement and conservation of African pigs. This study presents a genetic diversity analysis and population structure of pig breeds in Ghana, with a focus on the Ashanti Dwarf pig (ADP), an indigenous pig breed of Ghana. A total of 167 pigs sampled in Ghana and populations consisting of Ashanti Dwarf pigs (n = 106), exotics (mostly European pigs) (n = 11), crosses (between indigenous and exotic breeds) (n = 44), and unknown breeds (nondescript) (n = 6) were genotyped using Porcine SNP60K BeadChip. Moderate heterozygosity levels, ranging from 0.28 for Ashanti Dwarf pigs to 0.31 for exotic pigs (mostly European pigs), were observed. Principal component analysis of the pig populations within Ghana resulted in two distinct clusters of pigs: (i) Northern and (ii) Southern regional clusters. The PCA based on breed also resulted in four clusters: (i) ADPs; (ii) exotics (iii) crossbreeds between ADP and exotics; (iv) unknown breed types. The PCA demonstrated that the clustering was influenced by genetics, geographical location, production systems, and practices. ADMIXTURE-based analysis also showed that the populations within Ghana are admixed. FST analysis revealed SNPs associated with QTLs for traits such as disease resilience and growth among ADP populations within the different regional and ecological zones of Ghana.

5.
PLoS Comput Biol ; 19(11): e1011498, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934729

RESUMO

Public-domain availability for bioinformatics software resources is a key requirement that ensures long-term permanence and methodological reproducibility for research and development across the life sciences. These issues are particularly critical for widely used, efficient, and well-proven methods, especially those developed in research settings that often face funding discontinuities. We re-launch a range of established software components for computational genomics, as legacy version 1.0.1, suitable for sequence matching, masking, searching, clustering and visualization for protein family discovery, annotation and functional characterization on a genome scale. These applications are made available online as open source and include MagicMatch, GeneCAST, support scripts for CoGenT-like sequence collections, GeneRAGE and DifFuse, supported by centrally administered bioinformatics infrastructure funding. The toolkit may also be conceived as a flexible genome comparison software pipeline that supports research in this domain. We illustrate basic use by examples and pictorial representations of the registered tools, which are further described with appropriate documentation files in the corresponding GitHub release.


Assuntos
Genômica , Software , Reprodutibilidade dos Testes , Genômica/métodos , Biologia Computacional/métodos , Genoma
6.
Br J Cancer ; 129(9): 1451-1461, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37789102

RESUMO

BACKGROUND: MiR-371~373 and miR-302/367 cluster over-expression occurs in all malignant germ cell tumours (GCTs), regardless of age (paediatric/adult), site (gonadal/extragonadal), or subtype [seminoma, yolk sac tumour (YST), embryonal carcinoma (EC)]. Six of eight microRNAs from these clusters contain the seed sequence 'AAGUGC', determining mRNA targeting. Here we sought to identify the significance of these observations by targeting these microRNAs functionally. METHODS: We targeted miR-371~373 and/or miR-302/367 clusters in malignant GCT cell lines, using CRISPR-Cas9, gapmer primary miR-302/367 transcript inhibition, and peptide nucleic acid (PNA) or locked nucleic acid (LNA)-DNA inhibition targeting miR-302a-d-3p, and undertook relevant functional assays. RESULTS: MiR-302/367 cluster microRNAs made the largest contribution to AAGUGC seed abundance in malignant GCT cells, regardless of subtype (seminoma/YST/EC). Following the unsuccessful use of CRISPR-Cas9, gapmer, and PNA systems, LNA-DNA-based targeting resulted in growth inhibition in seminoma and YST cells. This was associated with the de-repression of multiple mRNAs targeted by AAGUGC seed-containing microRNAs, with pathway analysis confirming predominant disruption of Rho-GTPase signalling, vesicle organisation/transport, and cell cycle regulation, findings corroborated in clinical samples. Further LNA-DNA inhibitor studies confirmed direct cell cycle effects, with an increase of cells in G0/G1-phase and a decrease in S-phase. CONCLUSION: Targeting of specific miR-371~373 and miR-302/367 microRNAs in malignant GCTs demonstrated their functional significance, with growth inhibition mediated through cell cycle disruption.


Assuntos
MicroRNAs , Neoplasias Embrionárias de Células Germinativas , Seminoma , Neoplasias Testiculares , Masculino , Adulto , Humanos , Criança , MicroRNAs/genética , Seminoma/genética , Neoplasias Testiculares/patologia , Ciclo Celular , DNA
7.
Front Mol Biosci ; 10: 1176802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363400

RESUMO

Recessive X-linked ichthyosis (RXLI), a genetic disorder caused by deletion or point mutations of the steroid sulfatase (STS) gene, is the second most common form of ichthyosis. It is a disorder of keratinocyte cholesterol sulfate retention and the mechanism of extracutaneous phenotypes such as corneal opacities and attention deficit hyperactivity disorder are poorly understood. To understand the pathomechanisms of RXLI, the transcriptome of differentiated primary keratinocytes with STS knockdown was sequenced. The results were validated in a stable knockdown model of STS, to confirm STS specificity, and in RXLI skin. The results show that there was significantly reduced expression of genes related to epidermal differentiation and lipid metabolism, including ceramide and sphingolipid synthesis. In addition, there was significant downregulation of aldehyde dehydrogenase family members and the oxytocin receptor which have been linked to corneal transparency and behavioural disorders respectively, both of which are extracutaneous phenotypes of RXLI. These data provide a greater understanding of the causative mechanisms of RXLI's cutaneous phenotype, and show that the keratinocyte transcriptome and lipidomics can give novel insights into the phenotype of patients with RXLI.

8.
Andrology ; 11(4): 738-755, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36254403

RESUMO

BACKGROUND: Analyses of small non-coding RNA (ncRNA) expression in malignant germ cell tumours (GCTs) have focused on microRNAs (miRNAs). As GCTs all arise from primordial germ cells, and piwi-interacting RNAs (piRNAs) have important roles in maintaining germline integrity via transposon silencing, we hypothesised that malignant GCTs are characterised by fundamental piRNA dysregulation. AIMS: We undertook global small ncRNA sequencing in malignant GCTs, in order to describe small ncRNA expression changes for both miRNAs and piRNAs. MATERIALS AND METHODS: We performed small ncRNA next generation sequencing on a representative panel of 47 samples, comprising malignant GCT (n = 31) and control (n = 16) tissues/cell lines. Following quality control and normalisation, filtered count reads were used for differential miRNA and piRNA expression analyses via DESeq2. Predicted mRNA targets for piRNAs were identified and utilised for pathway enrichment analyses. RESULTS: Overall, miRNAs and piRNAs comprised 21.9% and 43.0% of small ncRNA species, respectively. There were 749 differentially expressed miRNAs in malignant GCTs, of which 536 (72%) were over-expressed and 213 (28%) under-expressed. The top-ranking over-expressed miRNAs were exclusively from the miR-371∼373 and miR-302/367 clusters. The most significantly under-expressed miRNAs were miR-100-5p, miR-214-3p, miR-125b-5p and let-7 family members, including miR-202-3p. There were 1,121 differentially expressed piRNAs in malignant GCTs, of which 167 (15%) were over-expressed and 954 (85%) under-expressed. Of note, of the top-20 differentially expressed piRNAs, 16 were over-expressed, of which piR-hsa-2506793 was both top-ranking and most abundant. Mobile element (ME; i.e., transposon)-associated piRNAs comprised 166 (15%) of the 1,121 differentially expressed piRNAs, of which 165 (>99%) were down-regulated. The remaining 955 (85%) non-ME-associated piRNAs may have wider cellular roles. To explore this, predicted mRNA targets of differentially expressed piRNAs identified putative involvement in cancer-associated pathways. CONCLUSION: This study confirms previous miRNA observations, giving credence to our novel demonstration of global piRNA dysregulation in gonadal malignant GCTs, through both ME and non-ME-associated pathways, which likely contributes to GCT pathogenesis.


Assuntos
MicroRNAs , Neoplasias Embrionárias de Células Germinativas , Pequeno RNA não Traduzido , Humanos , RNA de Interação com Piwi , MicroRNAs/genética , Neoplasias Embrionárias de Células Germinativas/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
9.
Cells ; 11(21)2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36359734

RESUMO

The midbody is an organelle that forms between the two daughter cells during cytokinesis. It co-ordinates the abscission of the nascent daughter cells and is composed of a multitude of proteins that are meticulously arranged into distinct temporal and spatial localization patterns. However, very little is known about the mechanisms that regulate the localization and function of midbody proteins. Here, we analyzed the temporal and spatial profiles of key midbody proteins during mitotic exit under normal conditions and after treatment with drugs that affect phosphorylation and proteasome-mediated degradation to decipher the impacts of post-translational modifications on midbody protein dynamics. Our results highlighted that midbody proteins show distinct spatio-temporal dynamics during mitotic exit and cytokinesis that depend on both ubiquitin-mediated proteasome degradation and phosphorylation/de-phosphorylation. They also identified two discrete classes of midbody proteins: 'transient' midbody proteins-including Anillin, Aurora B and PRC1-which rapidly accumulate at the midbody after anaphase onset and then slowly disappear, and 'stable' midbody proteins-including CIT-K, KIF14 and KIF23-which instead persist at the midbody throughout cytokinesis and also post abscission. These two classes of midbody proteins display distinct interaction networks with ubiquitylation factors, which could potentially explain their different dynamics and stability during cytokinesis.


Assuntos
Citocinese , Humanos , Citocinese/fisiologia , Células HeLa , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases
10.
PLoS One ; 17(9): e0270863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048819

RESUMO

Plasmodium falciparum, a protozoan parasite and causative agent of human malaria, has one of the most A/T-biased genomes sequenced to date. This may give the genome and the transcriptome unusual structural features. Recent progress in sequencing techniques has made it possible to study the secondary structures of RNA molecules at the transcriptomic level. Thus, in this study we produced the in vivo RNA structurome of a protozoan parasite with a highly A/U-biased transcriptome. We showed that it is possible to probe the secondary structures of P. falciparum RNA molecules in vivo using two different chemical probes, and obtained structures for more than half of all transcripts in the transcriptome. These showed greater stability (lower free energy) than the same structures modelled in silico, and structural features appeared to influence translation efficiency and RNA decay. Finally, we compared the P. falciparum RNA structurome with the predicted RNA structurome of an A/U-balanced species, P. knowlesi, finding a bias towards lower overall transcript stability and more hairpins and multi-stem loops in P. falciparum. This unusual protozoan RNA structurome will provide a basis for similar studies in other protozoans and also in other unusual genomes.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Genoma de Protozoário , Humanos , Malária/genética , Malária Falciparum/parasitologia , Parasitos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , RNA , RNA de Protozoário/genética , Transcriptoma
12.
PLoS Pathog ; 18(4): e1009854, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446919

RESUMO

Interactions between pathogens, host microbiota and the immune system influence many physiological and pathological processes. In the 20th century, widespread dermal vaccination with vaccinia virus (VACV) led to the eradication of smallpox but how VACV interacts with the microbiota and whether this influences the efficacy of vaccination are largely unknown. Here we report that intradermal vaccination with VACV induces a large increase in the number of commensal bacteria in infected tissue, which enhance recruitment of inflammatory cells, promote tissue damage and influence the host response. Treatment of vaccinated specific-pathogen-free (SPF) mice with antibiotic, or infection of genetically-matched germ-free (GF) animals caused smaller lesions without alteration in virus titre. Tissue damage correlated with enhanced neutrophil and T cell infiltration and levels of pro-inflammatory tissue cytokines and chemokines. One month after vaccination, GF and both groups of SPF mice had equal numbers of VACV-specific CD8+ T cells and were protected from disease induced by VACV challenge, despite lower levels of VACV-neutralising antibodies observed in GF animals. Thus, skin microbiota may provide an adjuvant-like stimulus during vaccination with VACV and influence the host response to vaccination.


Assuntos
Varíola , Vacínia , Animais , Anticorpos Antivirais , Bactérias , Camundongos , Varíola/prevenção & controle , Vacinação , Vaccinia virus
13.
Nat Commun ; 12(1): 7198, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893601

RESUMO

RNA molecules undergo a vast array of chemical post-transcriptional modifications (PTMs) that can affect their structure and interaction properties. In recent years, a growing number of PTMs have been successfully mapped to the transcriptome using experimental approaches relying on high-throughput sequencing. Oxford Nanopore direct-RNA sequencing has been shown to be sensitive to RNA modifications. We developed and validated Nanocompore, a robust analytical framework that identifies modifications from these data. Our strategy compares an RNA sample of interest against a non-modified control sample, not requiring a training set and allowing the use of replicates. We show that Nanocompore can detect different RNA modifications with position accuracy in vitro, and we apply it to profile m6A in vivo in yeast and human RNAs, as well as in targeted non-coding RNAs. We confirm our results with orthogonal methods and provide novel insights on the co-occurrence of multiple modified residues on individual RNA molecules.


Assuntos
Sequenciamento por Nanoporos/métodos , Nanoporos , RNA/metabolismo , Análise de Sequência de RNA/métodos , Sequência de Bases , Biologia Computacional , Perfilação da Expressão Gênica , Técnicas Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA/isolamento & purificação , Processamento Pós-Transcricional do RNA , Software , Transcriptoma
14.
PLoS Pathog ; 17(8): e1009875, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432858

RESUMO

Development of cervical cancer is directly associated with integration of human papillomavirus (HPV) genomes into host chromosomes and subsequent modulation of HPV oncogene expression, which correlates with multi-layered epigenetic changes at the integrated HPV genomes. However, the process of integration itself and dysregulation of host gene expression at sites of integration in our model of HPV16 integrant clone natural selection has remained enigmatic. We now show, using a state-of-the-art 'HPV integrated site capture' (HISC) technique, that integration likely occurs through microhomology-mediated repair (MHMR) mechanisms via either a direct process, resulting in host sequence deletion (in our case, partially homozygously) or via a 'looping' mechanism by which flanking host regions become amplified. Furthermore, using our 'HPV16-specific Region Capture Hi-C' technique, we have determined that chromatin interactions between the integrated virus genome and host chromosomes, both at short- (<500 kbp) and long-range (>500 kbp), appear to drive local host gene dysregulation through the disruption of host:host interactions within (but not exceeding) host structures known as topologically associating domains (TADs). This mechanism of HPV-induced host gene expression modulation indicates that integration of virus genomes near to or within a 'cancer-causing gene' is not essential to influence their expression and that these modifications to genome interactions could have a major role in selection of HPV integrants at the early stage of cervical neoplastic progression.


Assuntos
Carcinogênese/patologia , Cromatina/metabolismo , Genoma Viral , Papillomavirus Humano 16/isolamento & purificação , Infecções por Papillomavirus/complicações , Neoplasias do Colo do Útero/patologia , Integração Viral , Carcinogênese/metabolismo , Cromatina/genética , Epigênese Genética , Feminino , Humanos , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
15.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233721

RESUMO

Follicular lymphoma (FL) is a common indolent B-cell lymphoma that can transform into the more aggressive transformed FL (tFL). However, the molecular process driving this transformation is uncertain. In this work, we aimed to identify microRNA (miRNA)-binding sites recurrently mutated in follicular lymphoma patients, as well as in transformed FL patients. Using whole-genome sequencing data from FL tumors, we discovered 544 mutations located in bioinformatically predicted microRNA-binding sites. We then studied these specific regions using targeted sequencing in a cohort of 55 FL patients, found 16 recurrent mutations, and identified a further 69 variants. After filtering for QC, we identified 21 genes with mutated miRNA-binding sites that were also enriched for B-cell-associated genes by Gene Ontology. Over 40% of mutations identified in these genes were present exclusively in tFL patients. We validated the predicted miRNA-binding sites of five of the genes by luciferase assay and demonstrated that the identified mutations in BCL2 and EZH2 genes impaired the binding efficiency of miR-5008 and miR-144 and regulated the endogenous levels of messenger RNA (mRNA).


Assuntos
Sítios de Ligação , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Linfoma Folicular/genética , Linfoma Difuso de Grandes Células B/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Linhagem Celular Tumoral , Estudos de Coortes , Humanos , Londres , Mutação , Estudos Retrospectivos , Espanha
16.
Artigo em Inglês | MEDLINE | ID: mdl-33017936

RESUMO

Nanopore-based approaches for the sequencing of DNA and RNA molecules are promising technologies with potential applications in clinical genomics. These approaches have generated large numbers of time series objects over the years, however, it remains a challenge to accurately decipher the underlying nucleotide sequence corresponding to a given signal. By using a combination of consensus signal averaging and stream monitoring of variable-length motifs, we outline an online pattern matching framework that can efficiently locate consensus sequences in real world Nanopore datasets. We demonstrate the applicability of our proposed framework across two use-cases: demultiplexing of DNA barcodes and multiple motif site identification in RNA transcripts.


Assuntos
Nanoporos , Sequência de Bases , Consenso , DNA , Nucleotídeos
17.
J Clin Invest ; 130(9): 4798-4810, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32544098

RESUMO

The biology of harlequin ichthyosis (HI), a devastating skin disorder caused by loss-of-function mutations in the gene ABCA12, is poorly understood, and to date, no satisfactory treatment has been developed. We sought to investigate pathomechanisms of HI that could lead to the identification of new treatments for improving patients' quality of life. In this study, RNA-Seq and functional assays were performed to define the effects of loss of ABCA12 using HI patient skin samples and an engineered CRISPR/Cas9 ABCA12 KO cell line. The HI living skin equivalent (3D model) recapitulated the HI skin phenotype. The cytokines IL-36α and IL-36γ were upregulated in HI skin, whereas the innate immune inhibitor IL-37 was strongly downregulated. We also identified STAT1 and its downstream target inducible nitric oxide synthase (NOS2) as being upregulated in the in vitro HI 3D model and HI patient skin samples. Inhibition of NOS2 using the inhibitor 1400W or the JAK inhibitor tofacitinib dramatically improved the in vitro HI phenotype by restoring the lipid barrier in the HI 3D model. Our study has identified dysregulated pathways in HI skin that are feasible therapeutic targets.


Assuntos
Amidinas/farmacologia , Benzilaminas/farmacologia , Sistemas de Liberação de Medicamentos , Ictiose Lamelar , Modelos Biológicos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Piperidinas/farmacologia , Pirimidinas/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Ictiose Lamelar/tratamento farmacológico , Ictiose Lamelar/genética , Ictiose Lamelar/metabolismo , Ictiose Lamelar/patologia , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1/genética , Interleucina-1/metabolismo , Mutação com Perda de Função , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
18.
J Cell Sci ; 133(12)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32409566

RESUMO

Functional recovery after peripheral nerve damage is dependent on the reprogramming of differentiated Schwann cells (dSCs) into repair Schwann cells (rSCs), which promotes axonal regeneration and tissue homeostasis. Transition into a repair phenotype requires expression of c-Jun and Sox2, which transcriptionally mediates inhibition of the dSC program of myelination and activates a non-cell-autonomous repair program, characterized by the secretion of neuronal survival and regenerative molecules, formation of a cellular scaffold to guide regenerating axons and activation of an innate immune response. Moreover, rSCs release exosomes that are internalized by peripheral neurons, promoting axonal regeneration. Here, we demonstrate that reprogramming of Schwann cells (SCs) is accompanied by a shift in the capacity of their secreted exosomes to promote neurite growth, which is dependent on the expression of c-Jun (also known as Jun) and Sox2 by rSCs. Furthermore, increased expression of miRNA-21 is responsible for the pro-regenerative capacity of rSC exosomes, which is associated with PTEN downregulation and PI3-kinase activation in neurons. We propose that modification of exosomal cargo constitutes another important feature of the repair program of SCs, contributing to axonal regeneration and functional recovery after nerve injury.


Assuntos
Exossomos , MicroRNAs , Axônios , Reprogramação Celular , Exossomos/genética , MicroRNAs/genética , Regeneração Nervosa/genética , Células de Schwann
19.
Nat Commun ; 10(1): 4513, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586073

RESUMO

The midbody is an organelle assembled at the intercellular bridge between the two daughter cells at the end of mitosis. It controls the final separation of the daughter cells and has been involved in cell fate, polarity, tissue organization, and cilium and lumen formation. Here, we report the characterization of the intricate midbody protein-protein interaction network (interactome), which identifies many previously unknown interactions and provides an extremely valuable resource for dissecting the multiple roles of the midbody. Initial analysis of this interactome revealed that PP1ß-MYPT1 phosphatase regulates microtubule dynamics in late cytokinesis and de-phosphorylates the kinesin component MKLP1/KIF23 of the centralspindlin complex. This de-phosphorylation antagonizes Aurora B kinase to modify the functions and interactions of centralspindlin in late cytokinesis. Our findings expand the repertoire of PP1 functions during mitosis and indicate that spatiotemporal changes in the distribution of kinases and counteracting phosphatases finely tune the activity of cytokinesis proteins.


Assuntos
Citocinese/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Mapas de Interação de Proteínas/fisiologia , Proteína Fosfatase 1/metabolismo , Aurora Quinase B/metabolismo , Sítios de Ligação/genética , Células HeLa , Humanos , Microscopia Intravital , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Mitose/fisiologia , Mutagênese Sítio-Dirigida , Fosforilação/fisiologia , Proteína Fosfatase 1/genética , RNA Interferente Pequeno/metabolismo , Fuso Acromático/metabolismo , Imagem com Lapso de Tempo
20.
Nucleic Acids Res ; 47(14): 7262-7275, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31305886

RESUMO

RNA-Seq is a powerful transcriptome profiling technology enabling transcript discovery and quantification. Whilst most commonly used for gene-level quantification, the data can be used for the analysis of transcript isoforms. However, when the underlying transcript assemblies are complex, current visualization approaches can be limiting, with splicing events a challenge to interpret. Here, we report on the development of a graph-based visualization method as a complementary approach to understanding transcript diversity from short-read RNA-Seq data. Following the mapping of reads to a reference genome, a read-to-read comparison is performed on all reads mapping to a given gene, producing a weighted similarity matrix between reads. This is used to produce an RNA assembly graph, where nodes represent reads and edges similarity scores between them. The resulting graphs are visualized in 3D space to better appreciate their sometimes large and complex topology, with other information being overlaid on to nodes, e.g. transcript models. Here we demonstrate the utility of this approach, including the unusual structure of these graphs and how they can be used to identify issues in assembly, repetitive sequences within transcripts and splice variants. We believe this approach has the potential to significantly improve our understanding of transcript complexity.


Assuntos
Processamento Alternativo , Gráficos por Computador , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Genoma Humano/genética , Humanos , Modelos Genéticos , Modelos Moleculares , Conformação de Ácido Nucleico , Isoformas de RNA/química , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA