Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 369, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411765

RESUMO

BACKGROUND: In this study the formulation of parthenolide (PN), an anticancer agent extracted from a natural product, into a liposome (PN-liposome), was examined. The surface of the PN-liposome was modified using chitosan (PN-chitosome). By using real-time quantitative PCR and flow cytometry, we examined the release of PN-chitosomes, cytotoxicity, and ability to induce apoptosis in vitro. METHODS AND RESULTS: According to the present study, PN-chitosomes had a size of 251 nm which is acceptable for efficient enhanced permeation and retention (EPR) performance. PN-chitosomes were confirmed to be spherical in shape and size through FESEM analysis. In terms of encapsulation efficiency, 94.5% was achieved. PN-chitosome possessed a zeta potential of 34.72 mV, which was suitable for its stability. According to the FTIR spectra of PN and PN-chitosome, PN was chemically stable due to the intermolecular interaction between the liposome and the drug. After 48 h, only 10% of the PN was released from the PN-chitosome in PBS (pH 7.4), and less than 20% was released after 144 h. CONCLUSION: In a dose-dependent manner, PN-chitosome exhibited anticancer properties that were more cytotoxic against cancer cells than normal cells. Moreover, the formulation activated both the apoptosis pathway and cytotoxic genes in real-time qPCR experiments. According to the cytotoxicity and activating apoptosis of the prepared modified particle, PN-chitosome may be helpful in the treatment of cancer.


Assuntos
Quitosana , Sesquiterpenos , Quitosana/farmacologia , Lipossomos , Sesquiterpenos/farmacologia , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA