Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Korean J Physiol Pharmacol ; 27(4): 407-416, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37386838

RESUMO

The regeneration of myocardium following acute circulatory events remains a challenge, despite numerous efforts. Mesenchymal stem cells (MSCs) present a promising cell therapy option, but their differentiation into cardiomyocytes is a time-consuming process. Although it has been demonstrated that PSME4 degrades acetyl-YAP1, the role of PSME4 in the cardiac commitment of MSCs has not been fully elucidated. Here we reported the novel role of PSME4 in MSCs cardiac commitment. It was found that overnight treatment with apicidin in primary-cultured mouse MSCs led to rapid cardiac commitment, while MSCs from PSME4 knock-out mice did not undergo this process. Cardiac commitment was also observed using lentivirus-mediated PSME4 knockdown in immortalized human MSCs. Immunofluorescence and Western blot experiments revealed that YAP1 persisted in the nucleus of PSME4 knockdown cells even after apicidin treatment. To investigate the importance of YAP1 removal, MSCs were treated with shYAP1 and apicidin simultaneously. This combined treatment resulted in rapid YAP1 elimination and accelerated cardiac commitment. However, overexpression of acetylation-resistant YAP1 in apicidin-treated MSCs impeded cardiac commitment. In addition to apicidin, the universal effect of histone deacetylase (HDAC) inhibition on cardiac commitment was confirmed using tubastatin A and HDAC6 siRNA. Collectively, this study demonstrates that PSME4 is crucial for promoting the cardiac commitment of MSCs. HDAC inhibition acetylates YAP1 and facilitates its translocation to the nucleus, where it is removed by PSME4, promoting cardiac commitment. The failure of YAP1 to translocate or be eliminated from the nucleus results in the MSCs' inability to undergo cardiac commitment.

2.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298577

RESUMO

We aimed to investigate the effects of different concentrations of vascular endothelial growth factor (VEGF) on the extracellular matrix (ECM) and fibrotic proteins in human trabecular meshwork (TM) cells. We also explored how the Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling pathway modulates VEGF-induced fibrosis. We determined cross-linked actin network (CLAN) formation using TM cells. Changes in fibrotic and ECM protein expression were determined. High VEGF concentrations (10 and 30 ng/mL) increased TAZ and decreased p-TAZ/TAZ expression in TM cells. Western blotting and real-time PCR revealed no YAP expression changes. Fibrotic and ECM protein expression decreased at low VEGF concentrations (1 and 10 ρg/mL) and significantly increased at high VEGF concentrations (10 and 30 ng/mL). CLAN formation increased in TM cells treated with high VEGF concentrations. Moreover, TAZ inhibition by verteporfin (1 µM) rescued TM cells from high-VEGF-concentration-induced fibrosis. Low VEGF concentrations reduced fibrotic changes, whereas high VEGF concentrations accelerated fibrosis and CLAN formations in TM cells in a TAZ-dependent manner. These findings reflect the dose-dependent influences of VEGF on TM cells. Moreover, TAZ inhibition might be a therapeutic target for VEGF-induced TM dysfunction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Malha Trabecular , Fator A de Crescimento do Endotélio Vascular , Humanos , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Malha Trabecular/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Sinalização YAP
3.
Pharmaceutics ; 14(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015285

RESUMO

Intensive research has focused on minimizing the infarct area and stimulating endogenous regeneration after myocardial infarction. Our group previously elucidated that apicidin, a histone deacetylase (HDAC) inhibitor, robustly accelerates the cardiac commitment of naïve mesenchymal stem cells (MSCs) through acute loss of YAP1. Here, we propose the novel regulation of YAP1 in MSCs. We found that acute loss of YAP1 after apicidin treatment resulted in the mixed effects of transcriptional arrest and proteasomal degradation. Subcellular fractionation revealed that YAP1 was primarily localized in the cytoplasm. YAP1 was acutely relocalized into the nucleus and underwent proteasomal degradation. Interestingly, phosphor-S127 YAP1 was shuttled into the nucleus, suggesting that a mechanism other than phosphorylation governed the subcellular localization of YAP1. Apicidin successfully induced acetylation and subsequent dissociation of YAP1 from 14-3-3, an essential molecule for cytoplasmic restriction. HDAC6 regulated both acetylation and subcellular localization of YAP1. An acetylation-dead mutant of YAP1 retarded nuclear redistribution upon apicidin treatment. We failed to acquire convincing evidence for polyubiquitination-dependent degradation of YAP1, suggesting that a polyubiquitination-independent regulator determined YAP1 fate. Nuclear PSME4, a subunit of the 26 S proteasome, recognized and degraded acetyl YAP1 in the nucleus. MSCs from PSME4-null mice were injected into infarcted heart, and aberrant sudden death was observed. Injection of immortalized human MSCs after knocking down PSME4 failed to improve either cardiac function or the fibrotic scar area. Our data suggest that acetylation-dependent proteasome subunit PSME4 clears acetyl-YAP1 in response to apicidin treatment in the nucleus of MSCs.

5.
Exp Mol Med ; 53(11): 1781-1791, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34845330

RESUMO

Vascular calcification increases morbidity and mortality in patients with cardiovascular and renal diseases. Previously, we reported that histone deacetylase 1 prevents vascular calcification, whereas its E3 ligase, mouse double minute 2 homolog (MDM2), induces vascular calcification. In the present study, we identified the upstream regulator of MDM2. By utilizing cellular models and transgenic mice, we confirmed that E3 ligase activity is required for vascular calcification. By promoter analysis, we found that both msh homeobox 1 (Msx1) and msh homeobox 2 (Msx2) bound to the MDM2 promoter region, which resulted in transcriptional activation of MDM2. The expression levels of both Msx1 and Msx2 were increased in mouse models of vascular calcification and in calcified human coronary arteries. Msx1 and Msx2 potentiated vascular calcification in cellular and mouse models in an MDM2-dependent manner. Our results establish a novel role for MSX1/MSX2 in the transcriptional activation of MDM2 and the resultant increase in MDM2 E3 ligase activity during vascular calcification.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fator de Transcrição MSX1/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Ubiquitina-Proteína Ligases/genética , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo , Animais , Biomarcadores , Cálcio/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Mutação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Elementos de Resposta , Ubiquitina-Proteína Ligases/metabolismo , Calcificação Vascular/patologia
6.
Cells ; 10(11)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34831402

RESUMO

Heat shock protein (HSP) 70 is a molecular chaperone that regulates protein structure in response to thermal stress. In addition, HSP70 is involved in post-translational modification and is related to the severity of some diseases. Here, we tested the functional relevance of long-lasting HSP70 expression in a model of nonischemic heart failure using protein phosphatase 2 catalytic subunit A (PP2CA)-expressing transgenic mice. These transgenic mice, with cardiac-specific overexpression of PP2CA, abruptly died after 12 weeks of postnatal life. Serial echocardiograms to assess cardiac function revealed that the ejection fraction (EF) was gradually decreased in transgenic PP2CA (TgPP2CA) mice. In addition, PP2CA expression exacerbated systolic dysfunction and LV dilatation, with free wall thinning, which are indicators of fatal dilated cardiomyopathy. Interestingly, simultaneous expression of HSP70 in double transgenic mice (dTg) significantly improved the dilated cardiomyopathy phenotype of TgPP2CA mice. We observed better survival, preserved EF, reduced chamber enlargement, and suppression of free wall thinning. In the proposed molecular mechanism, HSP70 preferentially regulates the phosphorylation of AKT. Phosphorylation of AKT was significantly reduced in TgPP2CA mice but was not significantly lower in dTg mice. Signal crosstalk between AKT and its substrates, in association with HSP70, might be a useful intervention for patients with nonischemic heart failure to suppress cardiac remodeling and improve survival.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Proteína Fosfatase 2/metabolismo , Remodelação Ventricular , Animais , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Doença Crônica , Eletrocardiografia , Regulação da Expressão Gênica , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/genética , Camundongos Transgênicos , Fenótipo , Fosforilação , Processamento de Proteína Pós-Traducional , Análise de Sobrevida
7.
JMIR Public Health Surveill ; 7(10): e29379, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34623311

RESUMO

BACKGROUND: Basic studies suggest that statins as add-on therapy may benefit patients with COVID-19; however, real-world evidence of such a beneficial association is lacking. OBJECTIVE: We investigated differences in SARS-CoV-2 test positivity and clinical outcomes of COVID-19 (composite endpoint: admission to intensive care unit, invasive ventilation, or death) between statin users and nonusers. METHODS: Two independent population-based cohorts were analyzed, and we investigated the differences in SARS-CoV-2 test positivity and severe clinical outcomes of COVID-19, such as admission to the intensive care unit, invasive ventilation, or death, between statin users and nonusers. One group comprised an unmatched cohort of 214,207 patients who underwent SARS-CoV-2 testing from the Global Research Collaboration Project (GRCP)-COVID cohort, and the other group comprised an unmatched cohort of 74,866 patients who underwent SARS-CoV-2 testing from the National Health Insurance Service (NHIS)-COVID cohort. RESULTS: The GRCP-COVID cohort with propensity score matching had 29,701 statin users and 29,701 matched nonusers. The SARS-CoV-2 test positivity rate was not associated with statin use (statin users, 2.82% [837/29,701]; nonusers, 2.65% [787/29,701]; adjusted relative risk [aRR] 0.97; 95% CI 0.88-1.07). Among patients with confirmed COVID-19 in the GRCP-COVID cohort, 804 were statin users and 1573 were matched nonusers. Statin users were associated with a decreased likelihood of severe clinical outcomes (statin users, 3.98% [32/804]; nonusers, 5.40% [85/1573]; aRR 0.62; 95% CI 0.41-0.91) and length of hospital stay (statin users, 23.8 days; nonusers, 26.3 days; adjusted mean difference -2.87; 95% CI -5.68 to -0.93) than nonusers. The results of the NHIS-COVID cohort were similar to the primary results of the GRCP-COVID cohort. CONCLUSIONS: Our findings indicate that prior statin use is related to a decreased risk of worsening clinical outcomes of COVID-19 and length of hospital stay but not to that of SARS-CoV-2 infection.


Assuntos
COVID-19/epidemiologia , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/diagnóstico , Teste para COVID-19 , Estudos de Coortes , Feminino , Humanos , Tempo de Internação , Masculino , Pessoa de Meia-Idade , República da Coreia/epidemiologia , Adulto Jovem
8.
Nat Genet ; 53(10): 1480-1492, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34611363

RESUMO

Higher-order chromatin structure regulates gene expression, and mutations in proteins mediating genome folding underlie developmental disorders known as cohesinopathies. However, the relationship between three-dimensional genome organization and embryonic development remains unclear. Here we define a role for bromodomain-containing protein 4 (BRD4) in genome folding, and leverage it to understand the importance of genome folding in neural crest progenitor differentiation. Brd4 deletion in neural crest results in cohesinopathy-like phenotypes. BRD4 interacts with NIPBL, a cohesin agonist, and BRD4 depletion or loss of the BRD4-NIPBL interaction reduces NIPBL occupancy, suggesting that BRD4 stabilizes NIPBL on chromatin. Chromatin interaction mapping and imaging experiments demonstrate that BRD4 depletion results in compromised genome folding and loop extrusion. Finally, mutation of individual BRD4 amino acids that mediate an interaction with NIPBL impedes neural crest differentiation into smooth muscle. Remarkably, loss of WAPL, a cohesin antagonist, rescues attenuated smooth muscle differentiation resulting from BRD4 loss. Collectively, our data reveal that BRD4 choreographs genome folding and illustrates the relevance of balancing cohesin activity for progenitor differentiation.


Assuntos
Diferenciação Celular , Genoma , Crista Neural/citologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Integrases/metabolismo , Camundongos , Modelos Biológicos , Células-Tronco Embrionárias Murinas/metabolismo , Células Musculares/citologia , Crista Neural/metabolismo , Ligação Proteica , Domínios Proteicos , Proteólise , Fatores de Transcrição/química , Transcrição Gênica , Coesinas
9.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575960

RESUMO

Proteins dynamically contribute towards maintaining cellular homeostasis. Posttranslational modification regulates the function of target proteins through their immediate activation, sudden inhibition, or permanent degradation. Among numerous protein modifications, protein nitrosation and its functional relevance have emerged. Nitrosation generally initiates nitric oxide (NO) production in association with NO synthase. NO is conjugated to free thiol in the cysteine side chain (S-nitrosylation) and is propagated via the transnitrosylation mechanism. S-nitrosylation is a signaling pathway frequently involved in physiologic regulation. NO forms peroxynitrite in excessive oxidation conditions and induces tyrosine nitration, which is quite stable and is considered irreversible. Two main reducing systems are attributed to denitrosylation: glutathione and thioredoxin (TRX). Glutathione captures NO from S-nitrosylated protein and forms S-nitrosoglutathione (GSNO). The intracellular reducing system catalyzes GSNO into GSH again. TRX can remove NO-like glutathione and break down the disulfide bridge. Although NO is usually beneficial in the basal context, cumulative stress from chronic inflammation or oxidative insult produces a large amount of NO, which induces atypical protein nitrosation. Herein, we (1) provide a brief introduction to the nitrosation and denitrosylation processes, (2) discuss nitrosation-associated human diseases, and (3) discuss a possible denitrosylation strategy and its therapeutic applications.


Assuntos
Óxido Nítrico Sintase/genética , Nitrosação/genética , Estresse Nitrosativo/genética , Processamento de Proteína Pós-Traducional/genética , Glutationa/genética , Humanos , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Oxirredução/efeitos dos fármacos , Tiorredoxinas/genética
10.
Circulation ; 143(19): 1912-1925, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33715387

RESUMO

BACKGROUND: Although the clinical importance of heart failure with preserved ejection fraction has been extensively explored, most therapeutic regimens, including nitric oxide (NO) donors, lack therapeutic benefit. Although the clinical characteristics of heart failure with preserved ejection fraction are somewhat heterogeneous, diastolic dysfunction (DD) is one of the most important features. Here we report that neuronal NO synthase (nNOS) induces DD by S-nitrosylation of HDAC2 (histone deacetylase 2). METHODS: Two animal models of DD-SAUNA (SAlty drinking water/Unilateral Nephrectomy/Aldosterone) and mild transverse aortic constriction mice-as well as human heart samples from patients with left ventricular hypertrophy were used. Genetically modified mice that were either nNOS-ablated or HDAC2 S-nitrosylation-resistant were also challenged. N(ω)-propyl-L-arginine, an nNOS selective inhibitor, and dimethyl fumarate, an NRF2 (nuclear factor erythroid 2-related factor 2) inducer, were used. Molecular events were further checked in human left ventricle specimens. RESULTS: SAUNA or mild transverse aortic constriction stress impaired diastolic function and exercise tolerance without overt systolic failure. Among the posttranslational modifications tested, S-nitrosylation was most dramatically increased in both models. Utilizing heart samples from both mice and humans, we observed increases in nNOS expression and NO production. N(ω)-propyl-L-arginine alleviated the development of DD in vivo. Similarly, nNOS knockout mice were resistant to SAUNA stress. nNOS-induced S-nitrosylation of HDAC2 was relayed by transnitrosylation of GAPDH. HDAC2 S-nitrosylation was confirmed in both DD mouse and human left ventricular hypertrophy. S-nitrosylation of HDAC2 took place at C262 and C274. When DD was induced, HDAC2 S-nitrosylation was detected in wild-type mouse, but not in HDAC2 knock-in mouse heart that expressed HDAC2 C262A/C274A. In addition, HDAC2 C262A/C274A mice maintained normal diastolic function under DD stimuli. Gene delivery with adenovirus-associated virus 9 (AAV9)-NRF2, a putative denitrosylase of HDAC2, or pharmacological intervention by dimethyl fumarate successfully induced HDAC2 denitrosylation and mitigated DD in vivo. CONCLUSIONS: Our observations are the first to demonstrate a new mechanism underlying DD pathophysiology. Our results provide theoretical and experimental evidence to explain the ineffectiveness of conventional NO enhancement trials for improving DD with heart failure symptoms. More important, our results suggest that reduction of NO or denitrosylation of HDAC2 may provide a new therapeutic platform for the treatment of refractory heart failure with preserved ejection fraction.


Assuntos
Sopros Cardíacos/fisiopatologia , Histona Desacetilase 2/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
11.
Ann Lab Med ; 41(3): 318-322, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33303717

RESUMO

Diagnosis of Kawasaki disease (KD) is occasionally delayed because it is solely based on clinical symptoms. Previous studies have attempted to identify diagnostic biomarkers for KD. Recently, patients with KD were reported to have elevated serum ferritin levels. We investigated the usefulness of the serum ferritin level as a diagnostic biomarker for distinguishing KD from other acute febrile illnesses. Blood samples were obtained from pediatric patients with KD (N=77) and those with other acute febrile illnesses (N=32) between December 2007 and June 2011 for measuring various laboratory parameters, including serum ferritin levels. In patients with KD, laboratory tests were performed at diagnosis and repeated at 2, 14, and 56 days after intravenous immunoglobulin treatment. At the time of diagnosis, serum ferritin levels in patients with KD (188.8 µg/L) were significantly higher than those in patients with other acute febrile illnesses (106.8 µg/L, P=0.003). The serum ferritin cut-off value of 120.8 µg/L effectively distinguished patients with KD from those with other acute febrile illnesses, with a sensitivity and specificity of 74.5% and 83.3%, respectively. Serum ferritin may be a useful biomarker to distinguish KD from other acute febrile illnesses.


Assuntos
Ferritinas/sangue , Síndrome de Linfonodos Mucocutâneos , Biomarcadores/sangue , Criança , Feminino , Humanos , Masculino , Síndrome de Linfonodos Mucocutâneos/sangue , Sensibilidade e Especificidade
12.
Mol Ther Nucleic Acids ; 22: 627-639, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33230462

RESUMO

Vascular calcification, the ectopic deposition of calcium in blood vessels, develops in association with various metabolic diseases and atherosclerosis and is an independent predictor of morbidity and mortality associated with these diseases. Herein, we report that reduction of microRNA-27a-3p (miR-27a-3p) causes an increase in activating transcription factor 3 (ATF3), a novel osteogenic transcription factor, in vascular smooth muscle cells. Both microRNA (miRNA) and mRNA microarrays were performed with rat vascular smooth muscle cells, and reciprocally regulated pairs of miRNA and mRNA were selected after bioinformatics analysis. Inorganic phosphate significantly reduced the expression of miR-27a-3p in A10 cells. The transcript level was also reduced in vitamin D3-administered mouse aortas. miR-27a-3p mimic reduced calcium deposition, whereas miR-27a-3p inhibitor increased it. The Atf3 mRNA level was upregulated in a cellular vascular calcification model, and miR-27a-3p reduced the Atf3 mRNA and protein levels. Transfection with Atf3 could recover the miR-27a-3p-induced reduction of calcium deposition. Our results suggest that reduction of miR-27a-3p may contribute to the development of vascular calcification by de-repression of ATF3.

13.
Chonnam Med J ; 56(1): 6-11, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32021836

RESUMO

Cancer remains a leading cause of death, despite multimodal treatment approaches. Even in patients with a healthy immune response, cancer cells can escape the immune system during tumorigenesis. Cancer cells incapacitate the normal cell-mediated immune system by expressing immune modulation ligands such as programmed death (PD) ligand 1, the B7 molecule, or secreting activators of immune modulators. Chimeric antigen receptor (CAR) T cells were originally designed to target cancer cells. Engineered approaches allow CAR T cells, which possess a simplified yet specific receptor, to be easily activated in limited situations. CAR T cell treatment is a derivative of the antigen-antibody reaction and can be applied to various diseases. In this review, the current successes of CAR T cells in cancer treatment and the therapeutic potential of CAR T cells are discussed.

14.
Exp Mol Med ; 51(12): 1-9, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857581

RESUMO

The clinical importance of heart failure with preserved ejection fraction (HFpEF) has recently become apparent. HFpEF refers to heart failure (HF) symptoms with normal or near-normal cardiac function on echocardiography. Common clinical features of HFpEF include diastolic dysfunction, reduced compliance, and ventricular hypokinesia. HFpEF differs from the better-known HF with reduced ejection fraction (HFrEF). Despite having a "preserved ejection fraction," patients with HFpEF have symptoms such as shortness of breath, excessive tiredness, and limited exercise capability. Furthermore, the mortality rate and cumulative survival rate are as severe in HFpEF as they are in HFrEF. While beta-blockers and renin-angiotensin-aldosterone system modulators can improve the survival rate in HFrEF, no known therapeutic agents show similar effectiveness in HFpEF. Researchers have examined molecular events in the development of HFpEF using small and middle-sized animal models. This review discusses HFpEF with regard to etiology and clinical features and introduces the use of mouse and other animal models of human HFpEF.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Antagonistas Adrenérgicos beta/uso terapêutico , Animais , Insuficiência Cardíaca/metabolismo , Humanos , Sistema Renina-Angiotensina/efeitos dos fármacos , Pesquisa Translacional Biomédica
15.
Int J Mol Sci ; 20(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627491

RESUMO

The current study was undertaken to investigate whether histone deacetylases (HDACs) can modulate the viability of retinal ganglion cells (RGCs) and the activity of glial cells in a mouse model of retinal ischemia-reperfusion (IR) injury. C57BL/6J mice were subjected to constant elevation of intraocular pressure for 60 min to induce retinal IR injury. Expression of macroglial and microglial cell markers (GFAP and Iba1), hypoxia inducing factor (HIF)-1α, and histone acetylation was analyzed after IR injury. To investigate the role of HDACs in the activation of glial cells, overexpression of HDAC1 and HDAC2 isoforms was performed. To determine the effect of HDAC inhibition on RGC survival, trichostatin-A (TSA, 2.5 mg/kg) was injected intraperitoneally. After IR injury, retinal GFAP, Iba1, and HIF-1α were upregulated. Conversely, retinal histone acetylation was downregulated. Notably, adenoviral-induced overexpression of HDAC2 enhanced glial activation following IR injury, whereas overexpression of HDAC1 did not significantly affect glial activation. TSA treatment significantly increased RGC survival after IR injury. Our results suggest that increased activity of HDAC2 is closely related to glial activation in a mouse model of retinal IR injury and inhibition of HDACs by TSA showed neuroprotective potential in retinas with IR injuries.


Assuntos
Histona Desacetilase 2/fisiologia , Neuroglia/fisiologia , Traumatismo por Reperfusão/patologia , Retina/patologia , Células Ganglionares da Retina/patologia , Acetilação , Animais , Regulação para Baixo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Neuroglia/metabolismo , Retina/metabolismo , Regulação para Cima
16.
JCI Insight ; 4(16)2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31434807

RESUMO

Mesenchymal stem cells (MSCs) can suppress pathological inflammation. However, the mechanisms underlying the association between MSCs and inflammation remain unclear. Under coculture conditions with macrophages, MSCs highly expressed angiopoietin-like 4 (ANGPTL4) to blunt the polarization of macrophages toward the proinflammatory phenotype. ANGPTL4-deficient MSCs failed to inhibit the inflammatory macrophage phenotype. In inflammation-related animal models, the injection of coculture medium or ANGPTL4 protein increased the antiinflammatory macrophages in both peritonitis and myocardial infarction. In particular, cardiac function and pathology were markedly improved by ANGPTL4 treatment. We found that retinoic acid-related orphan receptor α (RORα) was increased by inflammatory mediators, such as IL-1ß, and bound to ANGPTL4 promoter in MSCs. Collectively, RORα-mediated ANGPTL4 induction was shown to contribute to the antiinflammatory activity of MSCs against macrophages under pathological conditions. This study suggests that the capability of ANGPTL4 to induce tissue repair is a promising opportunity for safe stem cell-free regeneration therapy from a translational perspective.


Assuntos
Proteína 4 Semelhante a Angiopoietina/fisiologia , Ativação de Macrófagos , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/terapia , Peritonite/terapia , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Animais , Anti-Inflamatórios não Esteroides , Polaridade Celular , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Inflamação/terapia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/imunologia , Miocardite/etiologia , Miocardite/prevenção & controle , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Peritonite/imunologia , Receptores do Ácido Retinoico/metabolismo
18.
Int J Mol Sci ; 20(6)2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884785

RESUMO

Fibrosis is characterized by excessive deposition of the extracellular matrix and develops because of fibroblast differentiation during the process of inflammation. Various cytokines stimulate resident fibroblasts, which differentiate into myofibroblasts. Myofibroblasts actively synthesize an excessive amount of extracellular matrix, which indicates pathologic fibrosis. Although initial fibrosis is a physiologic response, the accumulated fibrous material causes failure of normal organ function. Cardiac fibrosis interferes with proper diastole, whereas pulmonary fibrosis results in chronic hypoxia; liver cirrhosis induces portal hypertension, and overgrowth of fibroblasts in the conjunctiva is a major cause of glaucoma surgical failure. Recently, several reports have clearly demonstrated the functional relevance of certain types of histone deacetylases (HDACs) in various kinds of fibrosis and the successful alleviation of the condition in animal models using HDAC inhibitors. In this review, we discuss the therapeutic potential of HDAC inhibitors in fibrosis-associated human diseases using results obtained from animal models.


Assuntos
Fibrose/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Inflamação/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Matriz Extracelular/genética , Matriz Extracelular/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibrose/genética , Histona Desacetilases/genética , Humanos , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/genética , Hipertensão Portal/patologia , Inflamação/genética , Inflamação/patologia , Modelos Animais , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia
19.
Int J Mol Sci ; 20(3)2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30691015

RESUMO

The novel histone deacetylase inhibitor CG200745 was initially developed to treat various hematological and solid cancers. We investigated the molecular mechanisms associated with the renoprotective effects of CG200745 using deoxycorticosterone acetate (DOCA)-salt hypertensive (DSH) rats. DOCA strips (200 mg/kg) were implanted into rats one week after unilateral nephrectomy. Two weeks after DOCA implantation, DSH rats were randomly divided into two groups that received either physiological saline or CG200745 (5 mg/kg/day) for another two weeks. The extent of glomerulosclerosis and tubulointerstitial fibrosis was determined by Masson's trichrome staining. The renal expression of fibrosis and inflammatory markers was detected by semiquantitative immunoblotting, a polymerase chain reaction, and immunohistochemistry. Pathological signs such as glomerulosclerosis, tubulointerstitial fibrosis, increased systolic blood pressure, decreased creatinine clearance, and increased albumin-to-creatinine ratios in DSH rats were alleviated by CG200745 treatment compared to those manifestations in positive control animals. Furthermore, this treatment counteracted the increased expression of αSMA, TGF-ß1, and Bax, and the decreased expression of Bcl-2 in the kidneys of DSH rats. It also attenuated the increase in the number of apoptotic cells in DSH rats. Thus, CG200745 can effectively prevent the progression of renal injury in DSH rats by exerting anti-inflammatory, anti-fibrotic, and anti-apoptotic effects.


Assuntos
Acetato de Desoxicorticosterona/efeitos adversos , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Hipertensão/tratamento farmacológico , Nefropatias/prevenção & controle , Naftalenos/administração & dosagem , Actinas/metabolismo , Albuminas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Creatinina/metabolismo , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Hipertensão/induzido quimicamente , Hipertensão/complicações , Nefropatias/metabolismo , Masculino , Naftalenos/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo
20.
Cardiovasc Res ; 115(13): 1850-1860, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30596969

RESUMO

AIMS: Previously, we reported that phosphorylation of histone deacetylase 2 (HDAC2) and the resulting activation causes cardiac hypertrophy. Through further study of the specific binding partners of phosphorylated HDAC2 and their mechanism of regulation, we can better understand how cardiac hypertrophy develops. Thus, in the present study, we aimed to elucidate the function of one such binding partner, heat shock protein 70 (HSP70). METHODS AND RESULTS: Primary cultures of rat neonatal ventricular cardiomyocytes and H9c2 cardiomyoblasts were used for in vitro cellular experiments. HSP70 knockout (KO) mice and transgenic (Tg) mice that overexpress HSP70 in the heart were used for in vivo analysis. Peptide-precipitation and immunoprecipitation assay revealed that HSP70 preferentially binds to phosphorylated HDAC2 S394. Forced expression of HSP70 increased phosphorylation of HDAC2 S394 and its activation, but not that of S422/424, whereas knocking down of HSP70 reduced it. However, HSP70 failed to phosphorylate HDAC2 in the cell-free condition. Phosphorylation of HDAC2 S394 by casein kinase 2α1 enhanced the binding of HSP70 to HDAC2, whereas dephosphorylation induced by the catalytic subunit of protein phosphatase 2A (PP2CA) had the opposite effect. HSP70 prevented HDAC2 dephosphorylation by reducing the binding of HDAC2 to PP2CA. HSP70 KO mouse hearts failed to phosphorylate S394 HDAC2 in response to isoproterenol infusion, whereas Tg overexpression of HSP70 increased the phosphorylation and activation of HDAC2. 2-Phenylethynesulfonamide (PES), an HSP70 inhibitor, attenuated cardiac hypertrophy induced either by phenylephrine in neonatal ventricular cardiomyocytes or by aortic banding in mice. PES reduced HDAC2 S394 phosphorylation and its activation by interfering with the binding of HSP70 to HDAC2. CONCLUSION: These results demonstrate that HSP70 specifically binds to S394-phosphorylated HDAC2 and maintains its phosphorylation status, which results in HDAC2 activation and the development of cardiac hypertrophy. Inhibition of HSP70 has possible application as a therapeutic.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Histona Desacetilase 2/metabolismo , Hipertrofia Ventricular Esquerda/enzimologia , Miócitos Cardíacos/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Sítios de Ligação , Linhagem Celular , Modelos Animais de Doenças , Ativação Enzimática , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/deficiência , Proteínas de Choque Térmico HSP70/genética , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sulfonamidas/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA