Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Molecules ; 29(16)2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-39202830

RESUMO

In this study, heterocyclic compounds containing a benzothiophene scaffold were designed and synthetized, and their inhibitory activity against cholinesterases (ChE) and the viability of SH-SY5Y cells have been evaluated. Benzothiophenes 4a-4i and benzothiophene-chalcone hybrids 5a-5i were tested against both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), revealing interesting structure-activity relationships. In general, benzothiophene-chalcone hybrids from series 5 proved to be better inhibitors of both enzymes, with compound 5f being the best AChE inhibitor (IC50 = 62.10 µM) and compound 5h being the best BChE inhibitor (IC50 = 24.35 µM), the last one having an IC50 similar to that of galantamine (IC50 = 28.08 µM), the reference compound. The in silico ADME profile of the compounds was also studied. Molecular docking calculations were carried out to analyze the best binding scores and to elucidate enzyme-inhibitors' interactions.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Chalconas , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Tiofenos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Humanos , Tiofenos/química , Tiofenos/farmacologia , Tiofenos/síntese química , Chalconas/química , Chalconas/síntese química , Chalconas/farmacologia , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Relação Estrutura-Atividade , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Estrutura Molecular , Linhagem Celular Tumoral
2.
Chem Biol Interact ; 397: 111087, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823536

RESUMO

Xanthine oxidase (XO) plays a critical role in purine catabolism, catalyzing the conversion of hypoxanthine to xanthine and xanthine to uric acid, contributing to superoxide anion production. This process is implicated in various human diseases, particularly gout. Traditional XO inhibitors, such as allopurinol and febuxostat, while effective, may present side effects. Our study focuses on Asphodelus microcarpus, a plant renowned for traditional anti-inflammatory uses. Recent investigations into its phenolic-rich flowers, notably abundant in luteolin derivatives, reveal its potential as a natural source of XO inhibitors. In the present research, XO inhibition by an ethanolic flowers extract from A. microcarpus is reported. In silico docking studies have highlighted luteolin derivatives as potential XO inhibitors, and molecular dynamics support that luteolin 7-O-glucoside has the highest binding stability compared to other compounds and controls. In vitro studies confirm that luteolin 7-O-glucoside inhibits XO more effectively than the standard inhibitor allopurinol, with an IC50 value of 4.8 µg/mL compared to 11.5 µg/mL, respectively. These findings underscore the potential therapeutic significance of A. microcarpus in managing conditions related to XO activity. The research contributes valuable insights into the health-promoting properties of A. microcarpus and its potential application in natural medicine, presenting a promising avenue for further exploration in disease management.


Assuntos
Inibidores Enzimáticos , Luteolina , Simulação de Acoplamento Molecular , Xantina Oxidase , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Luteolina/química , Luteolina/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Glucosídeos/química , Glucosídeos/farmacologia , Simulação de Dinâmica Molecular , Flores/química , Alopurinol/farmacologia , Alopurinol/química , Humanos , Sítios de Ligação
3.
Plants (Basel) ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337865

RESUMO

Phytochemicals are bioactive plant compounds that provide humans with health benefits, representing a valuable source of novel bioactive molecules [...].

4.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895071

RESUMO

Oxidative stress is defined as an imbalance between the production of free radicals and reactive oxygen species (ROS) and the ability of the body to neutralize them by anti-oxidant defense systems. Cells can produce ROS during physiological processes, but excessive ROS can lead to non-specific and irreversible damage to biological molecules, such as DNA, lipids, and proteins. Mitochondria mainly produce endogenous ROS during both physiological and pathological conditions. Enzymes like nicotinamide adenine dinucleotide phosphate oxidase (NOX), xanthine oxidase (XO), lipoxygenase (LOX), myeloperoxidase (MPO), and monoamine oxidase (MAO) contribute to this process. The body has enzymatic and non-enzymatic defense systems to neutralize ROS. The intake of bioactive phenols, like quercetin (Que), can protect against pro-oxidative damage by quenching ROS through a non-enzymatic system. In this study, we evaluate the ability of Que to target endogenous oxidant enzymes involved in ROS production and explore the mechanisms of action underlying its anti-oxidant properties. Que can act as a free radical scavenger by donating electrons through the negative charges in its phenolic and ketone groups. Additionally, it can effectively inhibit the activity of several endogenous oxidative enzymes by binding them with high affinity and specificity. Que had the best molecular docking results with XO, followed by MAO-A, 5-LOX, NOX, and MPO. Que's binding to these enzymes was confirmed by subsequent molecular dynamics, revealing different stability phases depending on the enzyme bound. The 500 ns simulation showed a net evolution of binding for NOX and MPO. These findings suggest that Que has potential as a natural therapy for diseases related to oxidative stress.


Assuntos
Antioxidantes , Quercetina , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Simulação de Acoplamento Molecular , Estresse Oxidativo , Xantina Oxidase/metabolismo , Monoaminoxidase/metabolismo
5.
J Enzyme Inhib Med Chem ; 38(1): 2274798, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37905438

RESUMO

Type 2 diabetes (T2D) is a progressive metabolic disorder of glucose metabolism. One of the therapeutic approaches for the treatment of T2D is reducing postprandial hyperglycaemia through inhibition of the digestive enzymes α-glucosidase and α-amylase. In this context, aimed at identifying natural products endowed with anti-T2D potential, we focused on Ptilostemon casabonae (L.) Greuter, a species belonging to Asteraceae family. Enzymatic inhibition, antioxidant activity, phenolic composition and cellular assays were performed. This study revealed that the P. casabonae hydroalcoholic extract exerts a potent inhibitory activity against α-glucosidase. This activity is supported by an antioxidant effect, preventing ROS formation in a stressed cellular system. HPLC-PDA-MS/MS analysis, revealed a complex polyphenolic fraction. Among the tested pure compounds, 1,5-dicaffeoylquinic acid, apigenin and rutin displayed good α-glucosidase inhibitory activity. Our study suggested new potential of P. casabonae encouraging us to further testing the possible therapeutic potential of this extract.


Assuntos
Asteraceae , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antioxidantes/farmacologia , Hipoglicemiantes/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Glucosidases/metabolismo , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , alfa-Amilases/metabolismo
6.
ChemMedChem ; 18(21): e202300400, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37801332

RESUMO

Coumarin scaffold has proven to be promising in the development of bioactive agents, such as xanthine oxidase (XO) inhibitors. Novel hydroxylated 3-arylcoumarins were designed, synthesized, and evaluated for their XO inhibition and antioxidant properties. 3-(3'-Bromophenyl)-5,7-dihydroxycoumarin (compound 11) proved to be the most potent XO inhibitor, with an IC50 of 91 nM, being 162 times better than allopurinol, one of the reference controls. Kinetic analysis of compound 11 and compound 5 [3-(4'-bromothien-2'-yl)-5,7-dihydroxycoumarin], the second-best compound within the series (IC50 of 280 nM), has been performed, and both compounds showed a mixed-type inhibition. Both compounds present good antioxidant activity (ability to scavenge ABTS radical) and are able to reduce reactive oxygen species (ROS) levels in H2 O2 -treated cells. In addition, they proved to be non-cytotoxic in a Caco-2 cells viability assay. Molecular docking studies have been carried out to correlate the compounds' theoretical and experimental binding affinity to the XO binding pocket.


Assuntos
Inibidores Enzimáticos , Xantina Oxidase , Humanos , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Células CACO-2 , Cinética , Inibidores Enzimáticos/química , Antioxidantes/química
7.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675192

RESUMO

The design of novel antityrosinase agents appears extremely important in medical and industrial sectors because an irregular production of melanin is related to the insurgence of several skin-related disorders (e.g., melanoma) and the browning process of fruits and vegetables. Because melanogenesis also involves a nonenzymatic oxidative process, developing dual antioxidant and antityrosinase agents is advantageous. In this work, we evaluated the antioxidant and tyrosinase inhibition ability of two new bishydroxylated and two new monohydroxylated derivatives of (1E)-2-(1-(2-oxo-2H-chromen-3-yl)ethylidene)hydrazine-1-carbothioamide (T1) using different experimental and computational approaches. The study was also carried out on another monohydroxylated derivative of T1 for comparison. Interestingly, these molecules have more potent tyrosinase-inhibitory properties than the reference compound, kojic acid. Moreover, the antioxidant activity appears to be influenced according to the number and substitution pattern of the hydroxyl groups. The safety of the compounds without (T1), with one (T3), and with two (T6) hydroxyl groups, has also been assessed by studying their cytotoxicity on melanocytes. These results indicate that (1E)-2-(1-(2-oxo-2H-chromen-3-yl)ethylidene)hydrazine-1-carbothioamide and its hydroxylated derivatives are promising molecules for further drug development studies.


Assuntos
Antioxidantes , Tiossemicarbazonas , Antioxidantes/farmacologia , Monofenol Mono-Oxigenase , Tiossemicarbazonas/farmacologia , Melanócitos , Cumarínicos , Melaninas , Inibidores Enzimáticos/farmacologia
8.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296507

RESUMO

Skin aging is a progressive biological process of the human body, and it is not only time-dependent. Differently substituted 3-phenylcoumarins proved to efficiently inhibit tyrosinase. In the current work, new substitution patterns have been explored, and the biological studies were extended to other important enzymes involved in the processes of skin aging, as elastase, collagenase and hyaluronidase. From the studied series, five compounds presented inhibitory activity against tyrosinase, one compound against elastase, eight compounds against collagenase and two compounds against hyaluronidase, being five compounds dual inhibitors. The 3-(4'-Bromophenyl)-5,7-dihydroxycoumarin (1) and 3-(3'-bromophenyl)-5,7-dihydroxycoumarin (2) presented the best profiles against tyrosinase (IC50 = 1.05 µM and 7.03 µM) and collagenase (IC50 = 123.4 µM and 110.4 µM); the 3-(4'-bromophenyl)-6,7-dihydroxycoumarin (4) presented a good inhibition against tyrosinase and hyaluronidase; the 3-(3'-bromophenyl)-6,7-dihydroxycoumarin (5) showed an effective tyrosinase and elastase inhibition; and 6,7-dihydroxy-3-(3'-hydroxyphenyl)coumarin (11) presented a dual profile inhibition against collagenase and hyaluronidase. Furthermore, considering the overall activities tested, compounds 1 and 2 proved to be the most promising anti-aging compounds. These compounds also showed to have a photo-protective effect, without being cytotoxic to human skin keratinocyte cells. To predict the binding site with the target enzymes, computational studies were also carried out.


Assuntos
Envelhecimento da Pele , Dermatopatias , Humanos , Monofenol Mono-Oxigenase , Elastase Pancreática/metabolismo , Hialuronoglucosaminidase , Fator de Proteção Solar , Simulação de Acoplamento Molecular , Colagenases/metabolismo , Envelhecimento , Cumarínicos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
9.
Plants (Basel) ; 11(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890482

RESUMO

Plant extracts have long served as important sources of bioactive compounds, and they are currently the focus of extensive research in the development of novel preventive and therapeutic strategies. However, their health benefits are often limited by low bioavailability. Nanoparticle delivery systems can represent a solution to such limitations. Euphorbia characias is a Mediterranean shrub known to have biological activities, such as inhibiting tyrosinase and showing a potential role as a skin-whitening agent. In this study, an ethanolic extract from E. characias leaves was tested for its inhibitory activity on skin-related enzymes, such as elastase, collagenase, and hyaluronidase, and for sun protection factors. Moreover, the extract was formulated in phospholipid vesicles to improve its local bioavailability and applicability. The vesicles were characterized by size, surface charge, storage stability, and entrapment efficiency. The nanoformulation was also evaluated for antioxidant activity and assayed for cytocompatibility and anti-tyrosinase activity in melanoma cells. Our findings demonstrated that the extract has a photo-protective effect and enzyme-inhibitory properties. E. characias nanoformulation was also cytocompatible and improved the extract's activity in the cells, suggesting a potential skin application for antimelanogenic treatments and confirming the key role of nanotechnological approaches to maximize plant extract's potentialities.

10.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35337102

RESUMO

In the present work, we use a merger of computational and biochemical techniques as a rational guideline for structural modification of benzofuran derivatives to find pertinent structural features for the butyrylcholinesterase inhibitory activity and selectivity. Previously, we revealed a series of 2-phenylbenzofuran compounds that displayed a selective inhibitory activity for BChE. Here, in an effort to discover novel selective BChE inhibitors with favorable physicochemical and pharmacokinetic profiles, 2-benzylbenzofurans were designed, synthesized, and evaluated as BChE inhibitors. The 2-phenylbenzofuran scaffold structure is modified by introducing one methylene spacer between the benzofuran core and the 2-phenyl ring with a hydroxyl substituent in the para or meta position. Either position 5 or 7 of the benzofuran scaffold was substituted with a bromine or chlorine atom. Further assessment of the selected list of compounds indicated that the substituent's nature and position determined their activity and selectivity. 5-bromo-2-(4-hydroxybenzyl)benzofuran 9B proved to be the most potent butyrylcholinesterase inhibitor (IC50 = 2.93 µM) of the studied series. Computational studies were carried out to correlate the theoretical and experimental binding affinity of the compounds to the BChE protein.

11.
Nanomaterials (Basel) ; 12(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269233

RESUMO

Polyphenols are gaining increasing interest due to their beneficial properties to human health. Grape pomace, the by-product of wine production, is a source of these bioactive compounds. An extract from Tempranillo grape pomace was obtained and characterized qualitatively and quantitatively. The major components found were anthocyanins, flavan-3-ols, and flavonols. To improve the bioavailability of these compounds, the extract was formulated in phospholipid vesicles, namely transfersomes. Spherical unilamellar vesicles around 100 nm each were obtained. The antioxidant activity of both the extract and the transfersomes was evaluated by using colorimetric assays (i.e., DPPH, FRAP, and Folin-Ciocalteu). The cells' viability and the antioxidant activity were assessed in keratinocytes. The results showed that the extract and the transfersomes had no cytotoxic effects and exerted remarkable antioxidant activity, which was more evident in a vesicle formulation. These findings highlighted the potential of the Tempranillo grape pomace extract and the efficacy of the incorporation into phospholipid vesicles.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35249480

RESUMO

Since the authors are not responding to the editor's requests to fulfill the editorial requirement, therefore, the article has been withdrawn by the publisher.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php. Bentham Science Disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

13.
Plants (Basel) ; 10(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34371671

RESUMO

The aim of this review is to summarize all the compounds identified and characterized from Euphorbia characias, along with the biological activities reported for this plant. Euphorbia is one of the greatest genera in the spurge family of Euphorbiaceae and includes different kinds of plants characterized by the presence of milky latex. Among them, the species Euphorbia characias L. is an evergreen perennial shrub widely distributed in Mediterranean countries. E. characias latex and extracts from different parts of the plant have been extensively studied, leading to the identification of several chemical components such as terpenoids, sterol hydrocarbons, saturated and unsaturated fatty acids, cerebrosides and phenolic and carboxylic acids. The biological properties range between antioxidant activities, antimicrobial, antiviral and pesticidal activities, wound-healing properties, anti-aging and hypoglycemic properties and inhibitory activities toward target enzymes related to different diseases, such as cholinesterases and xanthine oxidase. The information available in this review allows us to consider the plant E. characias as a potential source of compounds for biomedical research.

14.
Plants (Basel) ; 10(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466576

RESUMO

The aim of this study was to test the inhibitory effect of fruit extracts from Washingtonia filifera on skin aging-related enzymes. The pulp extracts did not exert a significant enzyme inhibition while seed extracts from W. filifera exhibit anti-elastase, anti-collagenase, and anti-tyrosinase activities. Tyrosinase was mildly inhibited while a stronger effect was observed with respect to elastase and collagenase inhibition. Alcoholic extracts provided better results than aqueous extracts. Among them, methanol extracts showed the prominent enzyme inhibitory activities being IC50 value for elastase and collagenase comparable and even better than the reference compound. The inhibition mode of the most active extracts was investigated by Lineweaver-Burk plot analysis. Seed extracts from W. filifera were also investigated for their photo-protective effect by Mansur equation and the antioxidant activity of W. filifera extract was evaluated in oxidative-stressed cells. To evaluate the safety of the extract, the effect on cell viability of human keratinocytes cells was analyzed. Methanol extract presented the best photo-protective effect and exerted an antioxidant activity in a cellular system with no cytotoxic effect. The overall results demonstrate that W. filifera extracts are promising sources of bioactive compounds that could be used in cosmetic and pharmaceutical preparation.

15.
J Enzyme Inhib Med Chem ; 36(1): 517-524, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33494628

RESUMO

Washingtonia filifera seeds have revealed to possess antioxidant properties, butyrylcholinesterase and xanthine oxidase inhibition activities. The literature has indicated a relationship between Alzheimer's disease (AD) and type-2 diabetes (T2D). Keeping this in mind, we have now evaluated the inhibitory properties of W. filifera seed extracts on α-amylase, α-glucosidase enzyme activity and the Islet Amyloid Polypeptide (IAPP) fibrils formation. Three extracts from seeds of W. filifera were evaluated for their enzyme inhibitory effect and IC50 values were calculated for all the extracts. The inhibition mode was investigated by Lineweaver-Burk plot analysis and the inhibition of IAPP aggregate formation was monitored. W. filifera methanol seed extract appears as the most potent inhibitor of α-amylase, α-glucosidase, and for the IAPP fibril formation. Current findings indicate new potential of this extract that could be used for the identification or development of novel potential agents for T2D and AD.


Assuntos
Arecaceae/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Extratos Vegetais/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Sementes/química , Relação Estrutura-Atividade , alfa-Amilases/metabolismo
16.
Int J Biol Macromol ; 169: 428-435, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347933

RESUMO

In this study, we have investigated a series of hydroxylated 2-phenylbenzofurans compounds for their inhibitory activity against α-amylase and α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes seem to have an important role as antidiabetic drugs. Diabetes mellitus is a wide-spread metabolic disease characterized by elevated levels of blood glucose. The most common is type 2 diabetes, which can lead to severe complications. Since the aggregates of islet amyloid polypeptide (IAPP) are common in diabetic patients, the effect of compounds to inhibit amyloid fibril formation was also determined. All the compounds assayed showed to be more active against α-glucosidase. Compound 16 showed the lowest IC50 value of the series, and it is found to be 167 times more active than acarbose, the reference compound. The enzymatic activity assays showed that compound 16 acts as a mixed-type inhibitor of α-glucosidase. Furthermore, compound 16 displayed effective inhibition of IAPP aggregation and it manifested no significant cytotoxicity. To predict the binding of compound 16 to IAPP and α-glucosidase protein complexes, molecular docking studies were performed. Altogether, our results support that the 2-phenylbenzofuran derivatives could represent a promising candidate for developing molecules able to modulate multiple targets involved in diabetes mellitus disorder.


Assuntos
Benzofuranos/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Amilases/antagonistas & inibidores , Amiloide/química , Benzofuranos/química , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Humanos , Hidroxilação , Hipoglicemiantes/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Simulação de Acoplamento Molecular , Estudos Prospectivos , alfa-Amilases/química , alfa-Glucosidases/metabolismo
17.
Int J Biol Macromol ; 162: 774-780, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32574739

RESUMO

Overproduction of uric acid in the body leads to hyperuricemia, which is also closely related to gout. Uric acid production can be lowered by xanthine oxidase (XO) inhibitors. Inhibition of XO has also been proposed as a mechanism for improving cardiovascular health. Therefore, the search for new efficient XO inhibitors is an interesting topic in drug discovery. 3-Phenylcoumarins and 2-phenylbenzofurans are privileged scaffolds in medicinal chemistry. Their structural similarity makes them interesting molecules for a comparative study. Methoxy and nitro substituents were introduced in both scaffolds. The current study gives some insights into the synthesis and biological activity of these molecules against this important target. For the best compound of the series, the 3-(4-methoxyphenyl)-6-nitrocoumarin (4), the IC50 value, type of inhibition, cytotoxicity on B16F10 cells and ADME theoretical properties, were determined. Docking studies were also performed in order to better understand the interactions of this molecule with the XO binding pocket. This work is a preliminary screening for further design and synthesis of new non-purinergic derivatives as potential compounds involved in the inflammatory suppression, specially related to gout.


Assuntos
Benzofuranos/química , Cumarínicos/química , Descoberta de Drogas , Inibidores Enzimáticos/química , Xantina Oxidase/antagonistas & inibidores , Animais , Sítios de Ligação , Linhagem Celular , Hiperuricemia/tratamento farmacológico , Camundongos , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade
18.
Molecules ; 24(15)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375003

RESUMO

Antibiotic resistance is one of the main public health concerns of this century. This resistance is also associated with oxidative stress, which could contribute to the selection of resistant bacterial strains. Bearing this in mind, and considering that flavonoid compounds are well known for displaying both activities, we investigated a series of hydroxy-3-arylcoumarins with structural features of flavonoids for their antibacterial activity against different bacterial strains. Active compounds showed selectivity against the studied Gram-positive bacteria compared to Gram-negative bacteria. 5,7-Dihydroxy-3-phenylcoumarin (compound 8) displayed the best antibacterial activity against Staphylococcus aureus and Bacillus cereus with minimum inhibitory concentrations (MICs) of 11 g/mL, followed by Staphylococcus aureus (MRSA strain) and Listeria monocytogenes with MICs of 22 and 44 g/mL, respectively. Moreover, molecular docking studies performed on the most active compounds against Staphylococcus aureus tyrosyl-tRNA synthetase and topoisomerase II DNA gyrase revealed the potential binding mode of the ligands to the site of the appropriate targets. Preliminary structure-activity relationship studies showed that the antibacterial activity can be modulated by the presence of the 3-phenyl ring and by the position of the hydroxyl groups at the coumarin scaffold.


Assuntos
Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Cumarínicos/química , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/patogenicidade , Infecções Bacterianas/microbiologia , Cumarínicos/farmacologia , DNA Girase/química , DNA Girase/genética , Humanos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/patogenicidade , Simulação de Acoplamento Molecular , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
19.
J Enzyme Inhib Med Chem ; 34(1): 519-527, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30688117

RESUMO

Phytolacca, which belongs to the family of Phytolaccaceae, are known for their use in popular medicine. Bioactivity of five extracts from Phytolacca dioica seeds were evaluated in four bioassays. A selected group of compounds from the extract that displayed the best bioactivity was analysed. The ethyl acetate extract (EAE) possessed the highest content of phenolics, the highest inhibitory activity on the tyrosinase and xanthine oxidase enzymes and showed a high antioxidant activity. HPLC-DAD-MS was employed to identify the phenolics profile of the most active one (EAE). HSCCC analysis of the EAE led to the isolation of phytolaccoside B and a mixture of 4 isomers, isoamericanol B1, B2, C1 and C2. These isoamericanol isomers presented activity against tyrosinase and xanthine oxidase. Our results revealed for the first time an interesting biological activity of the extract and isolated compounds from P. dioica seeds, which could be considered as a source of bioactive molecules.


Assuntos
Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Phytolacca/química , Extratos Vegetais/farmacologia , Xantina Oxidase/antagonistas & inibidores , Antioxidantes/química , Antioxidantes/isolamento & purificação , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade , Xantina Oxidase/metabolismo
20.
RSC Adv ; 9(37): 21278-21287, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521327

RESUMO

The chemical composition and biological properties of palm Washingtonia filifera (Lindl.) H. Wendl. seeds are seldom studied. Bearing this in mind, the seeds of W. filifera fruits were analysed for their fatty acid and phenolic composition and their antioxidant activity in addition to their cholinesterase and xanthine oxidase inhibitory activities. Seed extracts were revealed as a good source of phenolics with significant antioxidant activity. The phenolic profile mainly consisted of proanthocyanidins or procyanidin dimers B1-B4 among the major compounds. The highest butyrylcholinesterase inhibitory activity was found in the ethanolic extracts of seeds, with IC50 values of 13.73 ± 1.31 µg mL-1. Seed alcoholic extracts also displayed interesting xanthine oxidase inhibitory activity, with IC50 values ranging between 75.2 ± 17.0 µg mL-1 and 95.8 ± 5.9 µg mL-1. Procyanidin B1, a major component in the extracts, could be an important contributor to that activity, as it was found to possess good xanthine oxidase inhibition capacity (IC50 value of 53.51 ± 6.03 µg mL-1). Docking studies were also performed to predict the binding sites of procyanidins B1 and B2 within the xanthine oxidase structure. In all, W. filifera seeds appear as a promising natural source for the extraction of bioactive compounds with antioxidant and butyrylcholinesterase as well as xanthine oxidase inhibitory potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA