Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
DNA Repair (Amst) ; 9(11): 1209-13, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20864418

RESUMO

The DNA mismatch repair (MMR) protein dimer MutLα is comprised of the MutL homologues MLH1 and PMS2, which each belong to the family of GHL ATPases. These ATPases undergo functionally important conformational changes, including dimerization of the NH2-termini associated with ATP binding and hydrolysis. Previous studies in yeast and biochemical studies with the mammalian proteins established the importance of the MutLα ATPase for overall MMR function. Additionally, the studies in yeast demonstrated a functional asymmetry between the contributions of the Mlh1 and Pms1 ATPase domains to MMR that was not reflected in the biochemical studies. We investigated the effect of mutating the highly conserved ATP hydrolysis and Mg²(+) binding residues of MLH1 and PMS2 in mammalian cell lines. Amino acid substitutions in MLH1 intended to impact either ATP binding or hydrolysis disabled MMR, as measured by instability at microsatellite sequences, to an extent similar to MLH1-null mutation. Furthermore, cells expressing these MLH1 mutations exhibited resistance to the MMR-dependent cytotoxic effect of 6-thioguanine (6-TG). In contrast, ATP hydrolysis and binding mutants of PMS2 displayed no measurable increase in microsatellite instability or resistance to 6-TG. Our findings suggest that, in vivo, the integrity of the MLH1 ATPase domain is more critical than the PMS2 ATPase domain for normal MMR functions. These in vivo results are in contrast to results obtained previously in vitro that showed no functional asymmetry within the MutLα ATPase, highlighting the differences between in vivo and in vitro systems.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sequência Conservada , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , Hidrólise/efeitos dos fármacos , Camundongos , Instabilidade de Microssatélites/efeitos dos fármacos , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Mutação/efeitos dos fármacos , Proteínas Nucleares/genética , Fenótipo , Estrutura Terciária de Proteína , Tioguanina/toxicidade
2.
Dev Biol ; 337(1): 110-23, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19850033

RESUMO

Proper regulation of the Wingless/Wnt signaling pathway is essential for normal development. The scaffolding protein Axin plays a key role in this process through interactions with Drosophila Shaggy and Armadillo. In the current studies, we used a yeast two-hybrid assay to identify ten amino acids in Axin that are critical for in vitro interaction with Shaggy and two for interaction with Armadillo. We then generated five Axin variants in which individual putative contact amino acids were mutated and compared their activity, as assayed by rescue of axin null mutant flies, to that of Axin lacking the entire Shaggy (AxinDeltaSgg) or Armadillo (AxinDeltaArm) binding domain. Although we expected these mutants to function identically to Axin in which the entire binding domain was deleted, we instead observed a spectrum of phenotypic rescue. Specifically, two point mutants within the Shaggy binding domain showed loss of activity similar to that of AxinDeltaSgg and dominantly interfered with complex function, whereas a third mutant allele, AxinK446E, retained most function. Two Axin point mutants within the Armadillo binding domain were weak alleles and retained most function. These findings demonstrate the importance of in vivo verification of the role of specific amino acids within a protein.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas do Domínio Armadillo/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Quinase 3 da Glicogênio Sintase/fisiologia , Fatores de Transcrição/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Proteínas do Domínio Armadillo/metabolismo , Proteína Axina , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Glicogênio Sintase Quinase 3 beta , Dados de Sequência Molecular , Transdução de Sinais , Relação Estrutura-Atividade , Temperatura , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteína Wnt1/fisiologia
3.
Dev Biol ; 320(1): 226-41, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18561909

RESUMO

Secreted proteins in the Wnt family regulate gene expression in target cells by causing the accumulation of the transcriptional activator beta-catenin. In the absence of Wnt, a protein complex assembled around the scaffold protein Axin targets beta-catenin for destruction, thereby preventing it from transducing inappropriate signals. Loss of Axin or its binding partners APC and GSK3 results in aberrant activation of the Wnt signaling response. We have analyzed the effects of mutant forms of Drosophila Axin with large internal deletions when expressed at physiological levels in vivo, either in the presence or absence of wild type Axin. Surprisingly, even deletions that completely remove the binding sites for fly APC, GSK3 or beta-catenin, though they fail to rescue to viability, these mutant forms of Axin cause only mild developmental defects, indicating largely retained Axin function. Furthermore, two lethal Axin deletion constructs, AxinDeltaRGS and AxinDeltabeta cat(DeltaArm), can complement each other and restore viability. Our findings support a model in which the Axin complex is assembled through cooperative tripartite interactions among the binding partners, making the assembly of functional complexes surprisingly robust.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Proteína Axina , Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica , Deleção de Sequência , Termodinâmica , Proteína Wnt1
5.
Genetics ; 177(2): 707-21, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17720936

RESUMO

Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with defects in DNA mismatch repair. Mutations in either hMSH2 or hMLH1 underlie the majority of HNPCC cases. Approximately 25% of annotated hMSH2 disease alleles are missense mutations, resulting in a single change out of 934 amino acids. We engineered 54 missense mutations in the cognate positions in yeast MSH2 and tested for function. Of the human alleles, 55% conferred strong defects, 8% displayed intermediate defects, and 38% showed no defects in mismatch repair assays. Fifty percent of the defective alleles resulted in decreased steady-state levels of the variant Msh2 protein, and 49% of the Msh2 variants lost crucial protein-protein interactions. Finally, nine positions are predicted to influence the mismatch recognition complex ATPase activity. In summary, the missense mutations leading to loss of mismatch repair defined important structure-function relationships and the molecular analysis revealed the nature of the deficiency for Msh2 variants expressed in the tumors. Of medical relevance are 15 human alleles annotated as pathogenic in public databases that conferred no obvious defects in mismatch repair assays. This analysis underscores the importance of functional characterization of missense alleles to ensure that they are the causative factor for disease.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteína 2 Homóloga a MutS/genética , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/genética , Alelos , Reparo de Erro de Pareamento de DNA , Variação Genética , Humanos
6.
DNA Repair (Amst) ; 6(11): 1572-83, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17602897

RESUMO

Replication forks stall at DNA lesions or as a result of an unfavorable replicative environment. These fork stalling events have been associated with recombination and gross chromosomal rearrangements. Recombination and fork bypass pathways are the mechanisms accountable for restart of stalled forks. An important lesion bypass mechanism is the highly conserved post-replication repair (PRR) pathway that is composed of error-prone translesion and error-free bypass branches. EXO1 codes for a Rad2p family member nuclease that has been implicated in a multitude of eukaryotic DNA metabolic pathways that include DNA repair, recombination, replication, and telomere integrity. In this report, we show EXO1 functions in the MMS2 error-free branch of the PRR pathway independent of the role of EXO1 in DNA mismatch repair (MMR). Consistent with the idea that EXO1 functions independently in two separate pathways, we defined a domain of Exo1p required for PRR distinct from those required for interaction with MMR proteins. We then generated a point mutant exo1 allele that was defective for the function of Exo1p in MMR due to disrupted interaction with Mlh1p, but still functional for PRR. Lastly, by using a compound exo1 mutant that was defective for interaction with Mlh1p and deficient for nuclease activity, we provide further evidence that Exo1p plays both structural and catalytic roles during MMR.


Assuntos
Reparo de Erro de Pareamento de DNA , Replicação do DNA/fisiologia , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/fisiologia , Mutação , Alelos , Replicação do DNA/efeitos dos fármacos , Exodesoxirribonucleases/metabolismo , Metanossulfonato de Metila/farmacologia , Saccharomyces cerevisiae/enzimologia
7.
DNA Repair (Amst) ; 6(10): 1463-70, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17567544

RESUMO

Mutations in DNA mismatch repair (MMR) lead to increased mutation rates and higher recombination between similar, but not identical sequences, as well as resistance to certain DNA methylating agents. Recently, a component of human MMR machinery, MutLalpha, has been shown to display a latent endonuclease activity. The endonuclease active site appears to include a conserved motif, DQHA(X)(2)E(X)(4)E, within the COOH-terminus of human PMS2. Substitution of the glutamic acid residue (E705) abolished the endonuclease activity and mismatch-dependent excision in vitro. Previously, we showed that the PMS2-E705K mutation and the corresponding mutation in Saccharomyces cerevisiae were both recessive loss of function alleles for mutation avoidance in vivo. Here, we show that mutations impacting this endonuclease motif also significantly affect MMR-dependent suppression of homeologous recombination in yeast and responses to S(n)1-type methylating agents in both yeast and mammalian cells. Thus, our in vivo results suggest that the endonuclease activity of MutLalpha is important not only in MMR-dependent mutation avoidance but also for recombination and damage response functions.


Assuntos
Enzimas Reparadoras do DNA/genética , Reparo do DNA , Mutação , Alelos , Animais , Sequência de Bases , Linhagem Celular Transformada , Dano ao DNA , Primers do DNA , Humanos , Camundongos , Proteínas MutL , Recombinação Genética
8.
DNA Repair (Amst) ; 6(1): 27-37, 2007 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-16987715

RESUMO

Homologous recombination is an important pathway for the repair of DNA double-strand breaks (DSBs). In the yeast Saccharomyces cerevisiae, Rad52 is a central recombination protein, whereas its paralogue, Rad59, plays a more subtle role in homologous recombination. Both proteins can mediate annealing of complementary single-stranded DNA in vitro, but only Rad52 interacts with replication protein A and the Rad51 recombinase. We have studied the functional overlap between Rad52 and Rad59 in living cells using chimeras of the two proteins and site-directed mutagenesis. We find that Rad52 and Rad59 have both overlapping as well as separate functions in DSB repair. Importantly, the N-terminus of Rad52 possesses functions not supplied by Rad59, which may account for its central role in homologous recombination.


Assuntos
Reparo do DNA , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Quebras de DNA de Cadeia Dupla , Replicação do DNA , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Teste de Complementação Genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Recombinação Genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
9.
Cancer Lett ; 249(2): 148-56, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17029773

RESUMO

The hPMS2 mutation E705K is associated with Turcot syndrome. To elucidate the pathogenesis of hPMS2-E705K, we modeled this mutation in yeast and characterized its expression and effects on mutation avoidance in mammalian cells. We found that while hPMS2-E705K (pms1-E738K in yeast) did not significantly affect hPMS2 (Pms1p in yeast) stability or interaction with MLH1, it could not complement the mutator phenotype in MMR-deficient mouse or yeast cells. Furthermore, hPMS2-E705K/pms1-E738K inhibited MMR in wild-type (WT) mammalian cell extracts or yeast cells only when present in excess amounts relative to WT PMS2. Our results strongly suggest that hPMS2-E705K is a recessive loss-of-function allele.


Assuntos
Adenosina Trifosfatases/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Adenosina Trifosfatases/metabolismo , Alelos , Animais , Linhagem Celular , Reparo de Erro de Pareamento de DNA , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genes Dominantes , Genes Recessivos , Humanos , Camundongos , Endonuclease PMS2 de Reparo de Erro de Pareamento , Mutação , Síndromes Neoplásicas Hereditárias/genética , Saccharomyces cerevisiae/genética
10.
PLoS Genet ; 2(11): e194, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17096599

RESUMO

Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most spontaneous mitotic HR in Saccharomyces cerevisiae is initiated by DNA lesions other than DSBs. Specifically, we describe a class of rad52 mutants that are fully proficient in inter- and intra-chromosomal mitotic HR, yet at the same time fail to repair DNA DSBs. The conclusions are drawn from genetic analyses, evaluation of the consequences of DSB repair failure at the DNA level, and examination of the cellular re-localization of Rad51 and mutant Rad52 proteins after introduction of specific DSBs. In further support of our conclusions, we show that, as in wild-type strains, UV-irradiation induces HR in these rad52 mutants, supporting the view that DNA nicks and single-stranded gaps, rather than DSBs, are major sources of spontaneous HR in mitotic yeast cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Recombinação Genética/genética , Saccharomyces cerevisiae/genética , Alelos , Camptotecina/farmacologia , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Topoisomerases/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Raios gama , Cinética , Testes de Sensibilidade Microbiana , Mitose/efeitos dos fármacos , Mitose/fisiologia , Proteínas Mutantes/metabolismo , Mutação/genética , Fenótipo , Transporte Proteico/efeitos dos fármacos , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Recombinação Genética/efeitos da radiação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/metabolismo , Raios Ultravioleta
11.
Nucleic Acids Res ; 34(9): 2587-97, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16707661

RESUMO

The sequence of the Saccharomyces cerevisiae RAD52 gene contains five potential translation start sites and protein-blot analysis typically detects multiple Rad52 species with different electrophoretic mobilities. Here we define the gene products encoded by RAD52. We show that the multiple Rad52 protein species are due to promiscuous choice of start codons as well as post-translational modification. Specifically, Rad52 is phosphorylated both in a cell cycle-independent and in a cell cycle-dependent manner. Furthermore, phosphorylation is dependent on the presence of the Rad52 C terminus, but not dependent on its interaction with Rad51. We also show that the Rad52 protein can be translated from the last three start sites and expression from any one of them is sufficient for spontaneous recombination and the repair of gamma-ray-induced double-strand breaks.


Assuntos
Códon de Iniciação , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alelos , Sequência de Aminoácidos , Ciclo Celular , Dados de Sequência Molecular , Mutação , Fosforilação , Processamento de Proteína Pós-Traducional , Proteína Rad52 de Recombinação e Reparo de DNA/química , Recombinação Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
12.
Mol Cell Biol ; 25(21): 9221-31, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16227575

RESUMO

Null mutations in DNA mismatch repair (MMR) genes elevate both base substitutions and insertions/deletions in simple sequence repeats. Data suggest that during replication of simple repeat sequences, polymerase slippage can generate single-strand loops on either the primer or template strand that are subsequently processed by the MMR machinery to prevent insertions and deletions, respectively. In the budding yeast Saccharomyces cerevisiae and mammalian cells, MMR appears to be more efficient at repairing mispairs comprised of loops on the template strand compared to loops on the primer strand. We identified two novel yeast pms1 alleles, pms1-G882E and pms1-H888R, which confer a strong defect in the repair of "primer strand" loops, while maintaining efficient repair of "template strand" loops. Furthermore, these alleles appear to affect equally the repair of 1-nucleotide primer strand loops during both leading- and lagging-strand replication. Interestingly, both pms1 mutants are proficient in the repair of 1-nucleotide loop mispairs in heteroduplex DNA generated during meiotic recombination. Our results suggest that the inherent inefficiency of primer strand loop repair is not simply a mismatch recognition problem but also involves Pms1 and other proteins that are presumed to function downstream of mismatch recognition, such as Mlh1. In addition, the findings reinforce the current view that during mutation avoidance, MMR is associated with the replication apparatus.


Assuntos
Proteínas de Transporte/genética , Reparo do DNA , Replicação do DNA , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras de Transdução de Sinal , Alelos , Motivos de Aminoácidos , Sequência de Aminoácidos , Pareamento Incorreto de Bases , Proteínas de Transporte/metabolismo , Sequência Conservada , Mutação da Fase de Leitura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Proteína 1 Homóloga a MutL , Proteínas MutL , Ácidos Nucleicos Heteroduplexes/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
DNA Repair (Amst) ; 3(12): 1549-59, 2004 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-15474417

RESUMO

Exo1 was first isolated as a 5' --> 3' exonuclease activity induced during meiosis in fission yeast and since that time has been implicated in a multitude of eukaryotic DNA metabolic pathways that include DNA repair, recombination, replication, and telomere integrity. Involvement in multiple pathways affecting genomic stability makes EXO1 a logical target for mutation during oncogenesis. Here, we review studies in several experimental systems that shed light on the role of Exo1 in these DNA transaction pathways, particularly those that may relate to oncogenesis.


Assuntos
Reparo do DNA/fisiologia , Exodesoxirribonucleases/fisiologia , Recombinação Genética/fisiologia , Telômero/metabolismo , Sequência de Aminoácidos , Animais , Enzimas Reparadoras do DNA , Exodesoxirribonucleases/genética , Humanos , Dados de Sequência Molecular , Mutação/genética , Neoplasias/etiologia , Neoplasias/genética , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Telômero/genética
14.
J Cell Biol ; 164(4): 547-56, 2004 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-14970192

RESUMO

Lipid movement between organelles is a critical component of eukaryotic membrane homeostasis. Niemann Pick type C (NP-C) disease is a fatal neurodegenerative disorder typified by lysosomal accumulation of cholesterol and sphingolipids. Expression of yeast NP-C-related gene 1 (NCR1), the orthologue of the human NP-C gene 1 (NPC1) defective in the disease, in Chinese hamster ovary NPC1 mutant cells suppressed lipid accumulation. Deletion of NCR1, encoding a transmembrane glycoprotein predominantly residing in the vacuole of normal yeast, gave no phenotype. However, a dominant mutation in the putative sterol-sensing domain of Ncr1p conferred temperature and polyene antibiotic sensitivity without changes in sterol metabolism. Instead, the mutant cells were resistant to inhibitors of sphingolipid biosynthesis and super sensitive to sphingosine and C2-ceramide. Moreover, plasma membrane sphingolipids accumulated and redistributed to the vacuole and other subcellular membranes of the mutant cells. We propose that the primordial function of these proteins is to recycle sphingolipids and that defects in this process in higher eukaryotes secondarily result in cholesterol accumulation.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Esteróis/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico/fisiologia , Células CHO , Membrana Celular/metabolismo , Cricetinae , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Proteína C1 de Niemann-Pick , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Frações Subcelulares/química , Frações Subcelulares/metabolismo , Proteínas de Transporte Vesicular
15.
Cell Biol Educ ; 3(1): 31-48, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-22039344

RESUMO

This work describes the project for an advanced undergraduate laboratory course in cell and molecular biology. One objective of the course is to teach students a variety of cellular and molecular techniques while conducting original research. A second objective is to provide instruction in science writing and data presentation by requiring comprehensive laboratory reports modeled on the primary literature. The project for the course focuses on a gene, MSH2, implicated in the most common form of inherited colorectal cancer. Msh2 is important for maintaining the fidelity of genetic material where it functions as an important component of the DNA mismatch repair machinery. The goal of the project has two parts. The first part is to create mapped missense mutation listed in the human databases in the cognate yeast MSH2 gene and to assay for defects in DNA mismatch repair. The second part of the course is directed towards understanding in what way are the variant proteins defective for mismatch repair. Protein levels are analyzed to determine if the missense alleles display decreased expression. Furthermore, the students establish whether the Msh2p variants are properly localized to the nucleus using indirect immunofluorescence and whether the altered proteins have lost their ability to interact with other subunits of the MMR complex by creating recombinant DNA molecules and employing the yeast 2-hybrid assay.


Assuntos
Currículo , Laboratórios , Modelos Biológicos , Biologia Molecular/educação , Proteína 2 Homóloga a MutS/genética , Mutação de Sentido Incorreto/genética , Saccharomyces cerevisiae/genética , Alelos , Reparo de Erro de Pareamento de DNA/genética , Enzimas de Restrição do DNA/metabolismo , DNA Recombinante/metabolismo , Imunofluorescência , Humanos , Mutagênese Sítio-Dirigida , Mutação/genética , Oligonucleotídeos/genética , Plasmídeos/genética , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Análise de Sequência de DNA
16.
Dev Cell ; 4(3): 407-18, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12636921

RESUMO

Activation of the Wnt signaling cascade provides key signals during development and in disease. Here we provide evidence, by designing a Wnt receptor with ligand-independent signaling activity, that physical proximity of Arrow (LRP) to the Wnt receptor Frizzled-2 triggers the intracellular signaling cascade. We have uncovered a branch of the Wnt pathway in which Armadillo activity is regulated concomitantly with the levels of Axin protein. The intracellular pathway bypasses Gsk3beta/Zw3, the kinase normally required for controlling beta-catenin/Armadillo levels, suggesting that modulated degradation of Armadillo is not required for Wnt signaling. We propose that Arrow (LRP) recruits Axin to the membrane, and that this interaction leads to Axin degradation. As a consequence, Armadillo is no longer bound by Axin, resulting in nuclear signaling by Armadillo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de LDL/metabolismo , Transdução de Sinais/genética , Transativadores/metabolismo , Transporte Ativo do Núcleo Celular/genética , Animais , Proteínas do Domínio Armadillo , Proteínas de Transporte/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Feminino , Receptores Frizzled , Regulação da Expressão Gênica no Desenvolvimento/genética , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Proteínas Relacionadas a Receptor de LDL , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas/genética , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G , Receptores de LDL/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/genética , Fatores de Transcrição , Proteína Wnt1
17.
Genetics ; 161(2): 549-62, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12072453

RESUMO

Rad52 is a DNA-binding protein that stimulates the annealing of complementary single-stranded DNA. Only the N terminus of Rad52 is evolutionarily conserved; it contains the core activity of the protein, including its DNA-binding activity. To identify amino acid residues that are important for Rad52 function(s), we systematically replaced 76 of 165 amino acid residues in the N terminus with alanine. These substitutions were examined for their effects on the repair of gamma-ray-induced DNA damage and on both interchromosomal and direct repeat heteroallelic recombination. This analysis identified five regions that are required for efficient gamma-ray damage repair or mitotic recombination. Two regions, I and II, also contain the classic mutations, rad52-2 and rad52-1, respectively. Interestingly, four of the five regions contain mutations that impair the ability to repair gamma-ray-induced DNA damage yet still allow mitotic recombinants to be produced at rates that are similar to or higher than those obtained with wild-type strains. In addition, a new class of separation-of-function mutation that is only partially deficient in the repair of gamma-ray damage, but exhibits decreased mitotic recombination similar to rad52 null strains, was identified. These results suggest that Rad52 protein acts differently on lesions that occur spontaneously during the cell cycle than on those induced by gamma-irradiation.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alanina/fisiologia , Sequência de Aminoácidos , Sequência Conservada , Proteínas de Ligação a DNA/fisiologia , Evolução Molecular , Raios gama , Dados de Sequência Molecular , Mutação , Proteína Rad52 de Recombinação e Reparo de DNA , Recombinação Genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Alinhamento de Sequência , Análise de Sequência de Proteína
18.
DNA Repair (Amst) ; 1(11): 895-912, 2002 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-12531018

RESUMO

Exo1p is a member of the Rad2p family of structure-specific nucleases that contain conserved N and I nuclease domains. Exo1p has been implicated in numerous DNA metabolic processes, such as recombination, double-strand break repair and DNA mismatch repair (MMR). In this report, we describe in vitro and in vivo characterization of full-length wild-type and mutant forms of Exo1p. Herein, we demonstrate that full-length yeast Exo1p possesses an intrinsic 5'-3' exonuclease activity as reported previously, but also possesses a flap-endonuclease activity. Our study indicates that Exo1p shares similar, but not identical structure-function relationships to other characterized members of the Rad2p family in the N and I nuclease domains. The two exo1p mutants we examined, showed deficiencies for both double-stranded DNA (dsDNA) 5'-3' exonuclease and flap-endonuclease activities. Examining the genetic interaction of these two exo1 mutations with rad27Delta suggest that the Exo1p flap-endonuclease activity and not the dsDNA 5'-3' exonuclease is redundant to Rad27p for viability. In addition, our in vivo results also indicate that many exo1Delta phenotypes are dependent on the complete catalytic activities of Exo1p. Finally, our findings plus those of other investigators suggest that Exo1p functions both in a catalytic and a structural capacity during DNA MMR.


Assuntos
Pareamento Incorreto de Bases/genética , Reparo do DNA/genética , Exodesoxirribonucleases/fisiologia , Proteínas Fúngicas/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Baculoviridae/genética , Canavanina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Primers do DNA/química , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Farmacorresistência Fúngica/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases Flap , Regulação Fúngica da Expressão Gênica , Genes Dominantes , Técnicas In Vitro , Mutagênese , Mutação/genética , Reação em Cadeia da Polimerase , Proteínas/genética , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Especificidade por Substrato , Supressão Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA