Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Aging Cell ; : e14375, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39422121

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder in children caused by a point mutation in the lamin A gene, resulting in a toxic form of lamin A called progerin. Accelerated atherosclerosis leading to heart attack and stroke are the major causes of death in these patients. Endothelial cell (EC) dysfunction contributes to the pathogenesis of HGPS related cardiovascular diseases (CVD). Endothelial cell-cell communications are important in the development of the vasculature, and their disruptions contribute to cardiovascular pathology. However, it is unclear how progerin interferes with such communications that lead to vascular dysfunction. An antibody array screening of healthy and HGPS patient EC secretomes identified Angiopoietin-2 (Ang2) as a down-regulated signaling molecule in HGPS ECs. A similar down-regulation of Ang2 mRNA and protein was detected in the aortas from an HGPS mouse model. Addition of Ang2 to HGPS ECs rescues vasculogenesis, normalizes endothelial cell migration and gene expression, and restores nitric oxide bioavailability through eNOS activation. Furthermore, Ang2 addition reverses unfavorable paracrine effects of HGPS ECs on vascular smooth muscle cells. Lastly, by utilizing adenine base editor (ABE)-corrected HGPS ECs and progerin-expressing HUVECs, we demonstrated a negative correlation between progerin and Ang2 expression. Lastly, our results indicated that Ang2 exerts its beneficial effect in ECs through Tie2 receptor binding, activating an Akt-mediated pathway. Together, these results provide molecular insights into EC dysfunction in HGPS and suggest that Ang2 treatment has potential therapeutic effects in HGPS-related CVD.

2.
Diabetologia ; 67(10): 2246-2259, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38967666

RESUMO

AIMS/HYPOTHESIS: Disruption of pancreatic islet function and glucose homeostasis can lead to the development of sustained hyperglycaemia, beta cell glucotoxicity and subsequently type 2 diabetes. In this study, we explored the effects of in vitro hyperglycaemic conditions on human pancreatic islet gene expression across 24 h in six pancreatic cell types: alpha; beta; gamma; delta; ductal; and acinar. We hypothesised that genes associated with hyperglycaemic conditions may be relevant to the onset and progression of diabetes. METHODS: We exposed human pancreatic islets from two donors to low (2.8 mmol/l) and high (15.0 mmol/l) glucose concentrations over 24 h in vitro. To assess the transcriptome, we performed single-cell RNA-seq (scRNA-seq) at seven time points. We modelled time as both a discrete and continuous variable to determine momentary and longitudinal changes in transcription associated with islet time in culture or glucose exposure. Additionally, we integrated genomic features and genetic summary statistics to nominate candidate effector genes. For three of these genes, we functionally characterised the effect on insulin production and secretion using CRISPR interference to knock down gene expression in EndoC-ßH1 cells, followed by a glucose-stimulated insulin secretion assay. RESULTS: In the discrete time models, we identified 1344 genes associated with time and 668 genes associated with glucose exposure across all cell types and time points. In the continuous time models, we identified 1311 genes associated with time, 345 genes associated with glucose exposure and 418 genes associated with interaction effects between time and glucose across all cell types. By integrating these expression profiles with summary statistics from genetic association studies, we identified 2449 candidate effector genes for type 2 diabetes, HbA1c, random blood glucose and fasting blood glucose. Of these candidate effector genes, we showed that three (ERO1B, HNRNPA2B1 and RHOBTB3) exhibited an effect on glucose-stimulated insulin production and secretion in EndoC-ßH1 cells. CONCLUSIONS/INTERPRETATION: The findings of our study provide an in-depth characterisation of the 24 h transcriptomic response of human pancreatic islets to glucose exposure at a single-cell resolution. By integrating differentially expressed genes with genetic signals for type 2 diabetes and glucose-related traits, we provide insights into the molecular mechanisms underlying glucose homeostasis. Finally, we provide functional evidence to support the role of three candidate effector genes in insulin secretion and production. DATA AVAILABILITY: The scRNA-seq data from the 24 h glucose exposure experiment performed in this study are available in the database of Genotypes and Phenotypes (dbGap; https://www.ncbi.nlm.nih.gov/gap/ ) with accession no. phs001188.v3.p1. Study metadata and summary statistics for the differential expression, gene set enrichment and candidate effector gene prediction analyses are available in the Zenodo data repository ( https://zenodo.org/ ) under accession number 11123248. The code used in this study is publicly available at https://github.com/CollinsLabBioComp/publication-islet_glucose_timecourse .


Assuntos
Perfilação da Expressão Gênica , Glucose , Ilhotas Pancreáticas , Análise de Célula Única , Humanos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Glucose/farmacologia , Glucose/metabolismo , Transcriptoma , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Hiperglicemia/genética , Hiperglicemia/metabolismo
3.
bioRxiv ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39005353

RESUMO

The hypothalamus, composed of several nuclei, is essential for maintaining our body's homeostasis. The arcuate nucleus (ARC), located in the mediobasal hypothalamus, contains neuronal populations with eminent roles in energy and glucose homeostasis as well as reproduction. These neuronal populations are of great interest for translational research. To fulfill this promise, we used a robotic cell culture platform to provide a scalable and chemically defined approach for differentiating human pluripotent stem cells (hPSCs) into pro-opiomelanocortin (POMC), somatostatin (SST), tyrosine hydroxylase (TH) and gonadotropin-releasing hormone (GnRH) neuronal subpopulations with an ARC-like signature. This robust approach is reproducible across several distinct hPSC lines and exhibits a stepwise induction of key ventral diencephalon and ARC markers in transcriptomic profiling experiments. This is further corroborated by direct comparison to human fetal hypothalamus, and the enriched expression of genes implicated in obesity and type 2 diabetes (T2D). Genome-wide chromatin accessibility profiling by ATAC-seq identified accessible regulatory regions that can be utilized to predict candidate enhancers related to metabolic disorders and hypothalamic development. In depth molecular, cellular, and functional experiments unveiled the responsiveness of the hPSC-derived hypothalamic neurons to hormonal stimuli, such as insulin, neuropeptides including kisspeptin, and incretin mimetic drugs such as Exendin-4, highlighting their potential utility as physiologically relevant cellular models for disease studies. In addition, differential glucose and insulin treatments uncovered adaptability within the generated ARC neurons in the dynamic regulation of POMC and insulin receptors. In summary, the establishment of this model represents a novel, chemically defined, and scalable platform for manufacturing large numbers of hypothalamic arcuate neurons and serves as a valuable resource for modeling metabolic and reproductive disorders.

4.
CRISPR J ; 7(1): 53-67, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353623

RESUMO

We developed an efficient CRISPR prime editing protocol and generated isogenic-induced pluripotent stem cell (iPSC) lines carrying heterozygous or homozygous alleles for putatively causal single nucleotide variants at six type 2 diabetes loci (ABCC8, MTNR1B, TCF7L2, HNF4A, CAMK1D, and GCK). Our two-step sequence-based approach to first identify transfected cell pools with the highest fraction of edited cells significantly reduced the downstream efforts to isolate single clones of edited cells. We found that prime editing can make targeted genetic changes in iPSC and optimization of system components and guide RNA designs that were critical to achieve acceptable efficiency. Systems utilizing PEmax, epegRNA modifications, and MLH1dn provided significant benefit, producing editing efficiencies of 36-73%. Editing success and pegRNA design optimization required for each variant differed depending on the sequence at the target site. With attention to design, prime editing is a promising approach to generate isogenic iPSC lines, enabling the study of specific genetic changes in a common genetic background.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Pluripotentes Induzidas , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , RNA Guia de Sistemas CRISPR-Cas
5.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961277

RESUMO

Complete characterization of the genetic effects on gene expression is needed to elucidate tissue biology and the etiology of complex traits. Here, we analyzed 2,344 subcutaneous adipose tissue samples and identified 34K conditionally distinct expression quantitative trait locus (eQTL) signals in 18K genes. Over half of eQTL genes exhibited at least two eQTL signals. Compared to primary signals, non-primary signals had lower effect sizes, lower minor allele frequencies, and less promoter enrichment; they corresponded to genes with higher heritability and higher tolerance for loss of function. Colocalization of eQTL with conditionally distinct genome-wide association study signals for 28 cardiometabolic traits identified 3,605 eQTL signals for 1,861 genes. Inclusion of non-primary eQTL signals increased colocalized signals by 46%. Among 30 genes with ≥2 pairs of colocalized signals, 21 showed a mediating gene dosage effect on the trait. Thus, expanded eQTL identification reveals more mechanisms underlying complex traits and improves understanding of the complexity of gene expression regulation.

6.
Cell Metab ; 35(11): 1897-1914.e11, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37858332

RESUMO

Genetic studies have identified numerous loci associated with type 2 diabetes (T2D), but the functional roles of many loci remain unexplored. Here, we engineered isogenic knockout human embryonic stem cell lines for 20 genes associated with T2D risk. We examined the impacts of each knockout on ß cell differentiation, functions, and survival. We generated gene expression and chromatin accessibility profiles on ß cells derived from each knockout line. Analyses of T2D-association signals overlapping HNF4A-dependent ATAC peaks identified a likely causal variant at the FAIM2 T2D-association signal. Additionally, the integrative association analyses identified four genes (CP, RNASE1, PCSK1N, and GSTA2) associated with insulin production, and two genes (TAGLN3 and DHRS2) associated with ß cell sensitivity to lipotoxicity. Finally, we leveraged deep ATAC-seq read coverage to assess allele-specific imbalance at variants heterozygous in the parental line and identified a single likely functional variant at each of 23 T2D-association signals.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Embrionárias Humanas , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Células Secretoras de Insulina/metabolismo , Polimorfismo de Nucleotídeo Único , Carbonil Redutase (NADPH)/genética , Carbonil Redutase (NADPH)/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(35): e2206612120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603758

RESUMO

Genetic association studies have identified hundreds of independent signals associated with type 2 diabetes (T2D) and related traits. Despite these successes, the identification of specific causal variants underlying a genetic association signal remains challenging. In this study, we describe a deep learning (DL) method to analyze the impact of sequence variants on enhancers. Focusing on pancreatic islets, a T2D relevant tissue, we show that our model learns islet-specific transcription factor (TF) regulatory patterns and can be used to prioritize candidate causal variants. At 101 genetic signals associated with T2D and related glycemic traits where multiple variants occur in linkage disequilibrium, our method nominates a single causal variant for each association signal, including three variants previously shown to alter reporter activity in islet-relevant cell types. For another signal associated with blood glucose levels, we biochemically test all candidate causal variants from statistical fine-mapping using a pancreatic islet beta cell line and show biochemical evidence of allelic effects on TF binding for the model-prioritized variant. To aid in future research, we publicly distribute our model and islet enhancer perturbation scores across ~67 million genetic variants. We anticipate that DL methods like the one presented in this study will enhance the prioritization of candidate causal variants for functional studies.


Assuntos
Aprendizado Profundo , Diabetes Mellitus Tipo 2 , Elementos Facilitadores Genéticos , Ilhotas Pancreáticas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Variação Genética , Humanos , Simulação por Computador
8.
Aging Cell ; 22(9): e13903, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365004

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder affecting tissues of mesenchymal origin. Most individuals with HGPS harbor a de novo c.1824C > T (p.G608G) mutation in the gene encoding lamin A (LMNA), which activates a cryptic splice donor site resulting in production of the toxic "progerin" protein. Clinical manifestations include growth deficiency, lipodystrophy, sclerotic dermis, cardiovascular defects, and bone dysplasia. Here we utilized the LmnaG609G knock-in (KI) mouse model of HGPS to further define mechanisms of bone loss associated with normal and premature aging disorders. Newborn skeletal staining of KI mice revealed altered rib cage shape and spinal curvature, and delayed calvarial mineralization with increased craniofacial and mandibular cartilage content. MicroCT analysis and mechanical testing of adult femurs indicated increased fragility associated with reduced bone mass, recapitulating the progressive bone deterioration that occurs in HGPS patients. We investigated mechanisms of bone loss in KI mice at the cellular level in bone cell populations. Formation of wild-type and KI osteoclasts from marrow-derived precursors was inhibited by KI osteoblast-conditioned media in vitro, suggesting a secreted factor(s) responsible for decreased osteoclasts on KI trabecular surfaces in vivo. Cultured KI osteoblasts exhibited abnormal differentiation characterized by reduced deposition and mineralization of extracellular matrix with increased lipid accumulation compared to wild-type, providing a mechanism for altered bone formation. Furthermore, quantitative analyses of KI transcripts confirmed upregulation of adipogenic genes both in vitro and in vivo. Thus, osteoblast phenotypic plasticity, inflammation and altered cellular cross-talk contribute to abnormal bone formation in HGPS mice.


Assuntos
Senilidade Prematura , Doenças do Desenvolvimento Ósseo , Progéria , Camundongos , Animais , Progéria/genética , Progéria/metabolismo , Mutação , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Diferenciação Celular
9.
bioRxiv ; 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37333221

RESUMO

Disruption of pancreatic islet function and glucose homeostasis can lead to the development of sustained hyperglycemia, beta cell glucotoxicity, and ultimately type 2 diabetes (T2D). In this study, we sought to explore the effects of hyperglycemia on human pancreatic islet (HPI) gene expression by exposing HPIs from two donors to low (2.8mM) and high (15.0mM) glucose concentrations over 24 hours, assaying the transcriptome at seven time points using single-cell RNA sequencing (scRNA-seq). We modeled time as both a discrete and continuous variable to determine momentary and longitudinal changes in transcription associated with islet time in culture or glucose exposure. Across all cell types, we identified 1,528 genes associated with time, 1,185 genes associated with glucose exposure, and 845 genes associated with interaction effects between time and glucose. We clustered differentially expressed genes across cell types and found 347 modules of genes with similar expression patterns across time and glucose conditions, including two beta cell modules enriched in genes associated with T2D. Finally, by integrating genomic features from this study and genetic summary statistics for T2D and related traits, we nominate 363 candidate effector genes that may underlie genetic associations for T2D and related traits.

10.
Nat Genet ; 55(6): 973-983, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37291194

RESUMO

Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in >55,000 participants from three ancestry groups. We identified ten new loci (P < 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Insulina/genética , Estudo de Associação Genômica Ampla , Resistência à Insulina/genética , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Glicemia/genética
11.
bioRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37214922

RESUMO

Genetic studies have identified numerous loci associated with type 2 diabetes (T2D), but the functional role of many loci has remained unexplored. In this study, we engineered isogenic knockout human embryonic stem cell (hESC) lines for 20 genes associated with T2D risk. We systematically examined ß-cell differentiation, insulin production and secretion, and survival. We performed RNA-seq and ATAC-seq on hESC-ß cells from each knockout line. Analyses of T2D GWAS signals overlapping with HNF4A-dependent ATAC peaks identified a specific SNP as a likely causal variant. In addition, we performed integrative association analyses and identified four genes ( CP, RNASE1, PCSK1N and GSTA2 ) associated with insulin production, and two genes ( TAGLN3 and DHRS2 ) associated with sensitivity to lipotoxicity. Finally, we leveraged deep ATAC-seq read coverage to assess allele-specific imbalance at variants heterozygous in the parental hESC line, to identify a single likely functional variant at each of 23 T2D GWAS signals.

12.
Proc Natl Acad Sci U S A ; 120(7): e2206797120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36757889

RESUMO

Genetic studies have identified ≥240 loci associated with the risk of type 2 diabetes (T2D), yet most of these loci lie in non-coding regions, masking the underlying molecular mechanisms. Recent studies investigating mRNA expression in human pancreatic islets have yielded important insights into the molecular drivers of normal islet function and T2D pathophysiology. However, similar studies investigating microRNA (miRNA) expression remain limited. Here, we present data from 63 individuals, the largest sequencing-based analysis of miRNA expression in human islets to date. We characterized the genetic regulation of miRNA expression by decomposing the expression of highly heritable miRNAs into cis- and trans-acting genetic components and mapping cis-acting loci associated with miRNA expression [miRNA-expression quantitative trait loci (eQTLs)]. We found i) 84 heritable miRNAs, primarily regulated by trans-acting genetic effects, and ii) 5 miRNA-eQTLs. We also used several different strategies to identify T2D-associated miRNAs. First, we colocalized miRNA-eQTLs with genetic loci associated with T2D and multiple glycemic traits, identifying one miRNA, miR-1908, that shares genetic signals for blood glucose and glycated hemoglobin (HbA1c). Next, we intersected miRNA seed regions and predicted target sites with credible set SNPs associated with T2D and glycemic traits and found 32 miRNAs that may have altered binding and function due to disrupted seed regions. Finally, we performed differential expression analysis and identified 14 miRNAs associated with T2D status-including miR-187-3p, miR-21-5p, miR-668, and miR-199b-5p-and 4 miRNAs associated with a polygenic score for HbA1c levels-miR-216a, miR-25, miR-30a-3p, and miR-30a-5p.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , MicroRNAs , Humanos , MicroRNAs/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Hemoglobinas Glicadas , Ilhotas Pancreáticas/metabolismo , Locos de Características Quantitativas/genética
13.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168419

RESUMO

Skeletal muscle, the largest human organ by weight, is relevant to several polygenic metabolic traits and diseases including type 2 diabetes (T2D). Identifying genetic mechanisms underlying these traits requires pinpointing the relevant cell types, regulatory elements, target genes, and causal variants. Here, we used genetic multiplexing to generate population-scale single nucleus (sn) chromatin accessibility (snATAC-seq) and transcriptome (snRNA-seq) maps across 287 frozen human skeletal muscle biopsies representing 456,880 nuclei. We identified 13 cell types that collectively represented 983,155 ATAC summits. We integrated genetic variation to discover 6,866 expression quantitative trait loci (eQTL) and 100,928 chromatin accessibility QTL (caQTL) (5% FDR) across the five most abundant cell types, cataloging caQTL peaks that atlas-level snATAC maps often miss. We identified 1,973 eGenes colocalized with caQTL and used mediation analyses to construct causal directional maps for chromatin accessibility and gene expression. 3,378 genome-wide association study (GWAS) signals across 43 relevant traits colocalized with sn-e/caQTL, 52% in a cell-specific manner. 77% of GWAS signals colocalized with caQTL and not eQTL, highlighting the critical importance of population-scale chromatin profiling for GWAS functional studies. GWAS-caQTL colocalization showed distinct cell-specific regulatory paradigms. For example, a C2CD4A/B T2D GWAS signal colocalized with caQTL in muscle fibers and multiple chromatin loop models nominated VPS13C, a glucose uptake gene. Sequence of the caQTL peak overlapping caSNP rs7163757 showed allelic regulatory activity differences in a human myocyte cell line massively parallel reporter assay. These results illuminate the genetic regulatory architecture of human skeletal muscle at high-resolution epigenomic, transcriptomic, and cell state scales and serve as a template for population-scale multi-omic mapping in complex tissues and traits.

14.
Am J Hum Genet ; 109(10): 1727-1741, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36055244

RESUMO

Transcriptomics data have been integrated with genome-wide association studies (GWASs) to help understand disease/trait molecular mechanisms. The utility of metabolomics, integrated with transcriptomics and disease GWASs, to understand molecular mechanisms for metabolite levels or diseases has not been thoroughly evaluated. We performed probabilistic transcriptome-wide association and locus-level colocalization analyses to integrate transcriptomics results for 49 tissues in 706 individuals from the GTEx project, metabolomics results for 1,391 plasma metabolites in 6,136 Finnish men from the METSIM study, and GWAS results for 2,861 disease traits in 260,405 Finnish individuals from the FinnGen study. We found that genetic variants that regulate metabolite levels were more likely to influence gene expression and disease risk compared to the ones that do not. Integrating transcriptomics with metabolomics results prioritized 397 genes for 521 metabolites, including 496 previously identified gene-metabolite pairs with strong functional connections and suggested 33.3% of such gene-metabolite pairs shared the same causal variants with genetic associations of gene expression. Integrating transcriptomics and metabolomics individually with FinnGen GWAS results identified 1,597 genes for 790 disease traits. Integrating transcriptomics and metabolomics jointly with FinnGen GWAS results helped pinpoint metabolic pathways from genes to diseases. We identified putative causal effects of UGT1A1/UGT1A4 expression on gallbladder disorders through regulating plasma (E,E)-bilirubin levels, of SLC22A5 expression on nasal polyps and plasma carnitine levels through distinct pathways, and of LIPC expression on age-related macular degeneration through glycerophospholipid metabolic pathways. Our study highlights the power of integrating multiple sets of molecular traits and GWAS results to deepen understanding of disease pathophysiology.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Bilirrubina , Carnitina , Glicerofosfolipídeos , Humanos , Masculino , Metabolômica , Locos de Características Quantitativas/genética , Membro 5 da Família 22 de Carreadores de Soluto/genética , Transcriptoma/genética
15.
Int J Obes (Lond) ; 46(8): 1478-1486, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35589964

RESUMO

BACKGROUND: COVID-19 severity varies widely. Although some demographic and cardio-metabolic factors, including age and obesity, are associated with increasing risk of severe illness, the underlying mechanism(s) are uncertain. SUBJECTS/METHODS: In a meta-analysis of three independent studies of 1471 participants in total, we investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 (ACE2), measured by RNA-Seq, which acts as a receptor for SARS-CoV-2 cellular entry. RESULTS: Lower adipose tissue ACE2 expression was associated with multiple adverse cardio-metabolic health indices, including type 2 diabetes (T2D) (P = 9.14 × 10-6), obesity status (P = 4.81 × 10-5), higher serum fasting insulin (P = 5.32 × 10-4), BMI (P = 3.94 × 10-4), and lower serum HDL levels (P = 1.92 × 10-7). ACE2 expression was also associated with estimated proportions of cell types in adipose tissue: lower expression was associated with a lower proportion of microvascular endothelial cells (P = 4.25 × 10-4) and higher proportion of macrophages (P = 2.74 × 10-5). Despite an estimated heritability of 32%, we did not identify any proximal or distal expression quantitative trait loci (eQTLs) associated with adipose tissue ACE2 expression. CONCLUSIONS: Our results demonstrate that individuals with cardio-metabolic features known to increase risk of severe COVID-19 have lower background ACE2 levels in this highly relevant tissue. Reduced adipose tissue ACE2 expression may contribute to the pathophysiology of cardio-metabolic diseases, as well as the associated increased risk of severe COVID-19.


Assuntos
Tecido Adiposo , Enzima de Conversão de Angiotensina 2 , COVID-19 , Tecido Adiposo/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/complicações , COVID-19/genética , Fatores de Risco Cardiometabólico , Diabetes Mellitus Tipo 2/genética , Células Endoteliais/metabolismo , Humanos , Obesidade , SARS-CoV-2
16.
Nat Commun ; 13(1): 1644, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347128

RESUMO

Few studies have explored the impact of rare variants (minor allele frequency < 1%) on highly heritable plasma metabolites identified in metabolomic screens. The Finnish population provides an ideal opportunity for such explorations, given the multiple bottlenecks and expansions that have shaped its history, and the enrichment for many otherwise rare alleles that has resulted. Here, we report genetic associations for 1391 plasma metabolites in 6136 men from the late-settlement region of Finland. We identify 303 novel association signals, more than one third at variants rare or enriched in Finns. Many of these signals identify genes not previously implicated in metabolite genome-wide association studies and suggest mechanisms for diseases and disease-related traits.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Alelos , Finlândia , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Fenótipo
17.
Aging Cell ; 20(9): e13457, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34453483

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare accelerated aging disorder most notably characterized by cardiovascular disease and premature death from myocardial infarction or stroke. The majority of cases are caused by a de novo single nucleotide mutation in the LMNA gene that activates a cryptic splice donor site, resulting in production of a toxic form of lamin A with a 50 amino acid internal deletion, termed progerin. We previously reported the generation of a transgenic murine model of progeria carrying a human BAC harboring the common mutation, G608G, which in the single-copy state develops features of HGPS that are limited to the vascular system. Here, we report the phenotype of mice bred to carry two copies of the BAC, which more completely recapitulate the phenotypic features of HGPS in skin, adipose, skeletal, and vascular tissues. We further show that genetic reduction of the mechanistic target of rapamycin (mTOR) significantly extends lifespan in these mice, providing a rationale for pharmacologic inhibition of the mTOR pathway in the treatment of HGPS.


Assuntos
Modelos Animais de Doenças , Longevidade , Progéria/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Serina-Treonina Quinases TOR/genética
19.
Cell Metab ; 33(8): 1577-1591.e7, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34081913

RESUMO

Recent clinical data have suggested a correlation between coronavirus disease 2019 (COVID-19) and diabetes. Here, we describe the detection of SARS-CoV-2 viral antigen in pancreatic beta cells in autopsy samples from individuals with COVID-19. Single-cell RNA sequencing and immunostaining from ex vivo infections confirmed that multiple types of pancreatic islet cells were susceptible to SARS-CoV-2, eliciting a cellular stress response and the induction of chemokines. Upon SARS-CoV-2 infection, beta cells showed a lower expression of insulin and a higher expression of alpha and acinar cell markers, including glucagon and trypsin1, respectively, suggesting cellular transdifferentiation. Trajectory analysis indicated that SARS-CoV-2 induced eIF2-pathway-mediated beta cell transdifferentiation, a phenotype that could be reversed with trans-integrated stress response inhibitor (trans-ISRIB). Altogether, this study demonstrates an example of SARS-CoV-2 infection causing cell fate change, which provides further insight into the pathomechanisms of COVID-19.


Assuntos
COVID-19/virologia , Transdiferenciação Celular , Células Secretoras de Insulina/virologia , SARS-CoV-2/patogenicidade , Acetamidas/farmacologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , COVID-19/mortalidade , Transdiferenciação Celular/efeitos dos fármacos , Chlorocebus aethiops , Cicloexilaminas/farmacologia , Citocinas/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Glucagon , Interações Hospedeiro-Patógeno , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Transdução de Sinais , Técnicas de Cultura de Tecidos , Tripsina/metabolismo , Células Vero , Adulto Jovem
20.
Am J Hum Genet ; 108(7): 1169-1189, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34038741

RESUMO

Identifying the molecular mechanisms by which genome-wide association study (GWAS) loci influence traits remains challenging. Chromatin accessibility quantitative trait loci (caQTLs) help identify GWAS loci that may alter GWAS traits by modulating chromatin structure, but caQTLs have been identified in a limited set of human tissues. Here we mapped caQTLs in human liver tissue in 20 liver samples and identified 3,123 caQTLs. The caQTL variants are enriched in liver tissue promoter and enhancer states and frequently disrupt binding motifs of transcription factors expressed in liver. We predicted target genes for 861 caQTL peaks using proximity, chromatin interactions, correlation with promoter accessibility or gene expression, and colocalization with expression QTLs. Using GWAS signals for 19 liver function and/or cardiometabolic traits, we identified 110 colocalized caQTLs and GWAS signals, 56 of which contained a predicted caPeak target gene. At the LITAF LDL-cholesterol GWAS locus, we validated that a caQTL variant showed allelic differences in protein binding and transcriptional activity. These caQTLs contribute to the epigenomic characterization of human liver and help identify molecular mechanisms and genes at GWAS loci.


Assuntos
Cromatina/metabolismo , Fígado/metabolismo , Locos de Características Quantitativas , Motivos de Aminoácidos , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA